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Santander Financial Institute (www.sanfi.es)

SANFI es el centro de referencia internacional en la generacion, difusion
y transferencia del conocimiento sobre el sector financiero, promovido
por la UC y el Banco Santander a través de la Fundacion UCEIF. Desde
sus inicios, dirige actividades en areas de formacion, investigacion y
transferencia:

Master en Banca y Mercados Financieros UC-Banco Santander

Constituye el eje nuclear de una formacion altamente especializada, or-
ganizada desde la fundaciéon en colaboracion con el Banco Santander.
Es Impartido en Espafia, México, Marruecos, Chile y Brasil, donde se
estan desarrollando la 242 Edicion, 212 Edicion, 132 Edicion y 32 Edicion
respectivamente.

Formacion In Company

SANFI potencia sus actividades para desarrollar la formacion de pro-
fesionales del sector financiero, principalmente del propio Santander,
destacando también su actuacion dentro de otros programas, como el
realizado con el Attijariwafa Bank.

Archivo Historico del Banco Santander

Situado en la CPD del Santander en Solares, comprende la clasificacion,
catalogacion, administracion y custodia, asi como la investigacidon y
difusion de los propios fondos de Banco Santander como de otras enti-
dades. Cabe destacar que posee mas de 27.000 registros de fondo.
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Banco Santander, distribuidos por los diferentes puntos de la geografia
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Fundacién...
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SUMMARY

The estimation of risk measures is an area of highest importance in the fi-
nancial industry. Risk measures play a major role in the risk-management
and in the computation of regulatory capital. The Basel III document has
suggested to shift from Value at Risk (VaR) into Expected Shortfall (ES)
as a risk measure and to consider stressed scenarios at a new confidence
level of 97.5%. This change is motivated by the appealing theoretical
properties of ES as a measure of risk and the poor properties of VaR. In
particular, VaR fails to control for “tail risk”. In this transition, the major
challenge faced by financial institutions is the unavailability of simple
tools for evaluation of ES forecasts (i.e. backtesting ES).

The objective of this thesis is to compare the performance of a variety
of models for VaR and ES estimation for a collection of assets of dif-
ferent nature: stock indexes, individual stocks, bonds, exchange rates,
and commodities. Throughout the thesis, by a VaR or an ES “model” is
meant a given specification for conditional volatility, combined with an
assumption on the probability distribution of return innovations.

Specifically, Chapter 1 considers the concept of unbiasedness in VaR
estimation. Francioni and Herzog (2012) (FH) showed that there exists
a bias correction for VaR when returns are Normally distributed. In this
chapter the FH analysis is extended to the Student-t distribution as well
as to Mixtures of two Normal distributions, using a bootstrapping algo-
rithm proposed by FH. The use of the probability-unbiased VaR avoids
the systematic underestimation of risk implied by the bias of standard
VaR measures. The magnitude of the distortion that needs to be exerted
on the quantile to move from the standard VaR to the probability-unbia-
sed VaR depends on the sample size and on the distribution assumption
on returns. Since financial returns usually have thick tails, the smaller
the sample size and the lower the heaviness of the tail of the assumed
distribution in estimation, the higher will be the distortion to be applied
to achieve unbiasedness. This VaR adjustment allows us to work with
small samples knowing that the estimated VaR will generally display
a good performance. Furthermore, the results in the thesis show that
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using a small sample may easily lead to more accurate VaR estimates
than longer samples according to the Exceedance Probability and to the
Observed Absolute Deviation per year (mean of the absolute differences
between the expected number of exceedances and the number of obser-
ved exceedances). The good performance of the probability-unbiased
VaR follows from the fact that a short sample size allows for capturing
better the structural changes that arise over time in financial returns due
to trading behavior.

Chapter 2 analyzes how the efficiency of VaR depends on the vola-
tility specification and the assumption on the probability distribution
for return innovations. This question is crucial for risk managers, since
there are so many potential choices for volatility model and probabi-
lity distributions that it would be very convenient to establish some
priorities in modeling returns for risk estimation. We consider different
conditional VaR models for assets of different nature, using symmetric
and asymmetric probability distributions for the innovations and vo-
latility models with and without leverage. We calculate VaR estimates
following the parametric approach. The ability to explain sample return
moments might be considered a natural condition to obtain a good VaR
performance. However, even though significant effort is usually placed
in selecting an appropriate combination of probability distribution and
volatility specification in VaR estimation, the ability to explain sample
return moments is seldom examined. After using simulation methods to
calculate implied return moments from estimated models, we compare
the implied levels of skewness and kurtosis of returns with the analogue
sample moments.

We show that the ability to explain sample moments is in fact linked to
performance in VaR estimation. Such performance is examined through
standard tests: the unconditional coverage test of Kupiec (1995), the in-
dependence and conditional coverage tests of Christoffersen (1998), the
Dynamic Quantile test of Engle and Manganelli (2004), as well as the loss
functions proposed by Lopez (1998, 1999) and Sarma et al. (2003) and
that of Giacomini and Komunjer (2005).

Relative to an ever increasing literature, we contribute in different ways:
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considering a set of probability distributions that have recently
been suggested to be appropriate for capturing the skewness
and kurtosis of financial data, but whose performance for VaR
estimation has not been compared yet on a common data set,
considering the APARCH and FGARCH volatility models with
leverage that have also been recognized as being adequate for
financial returns,

applying existing backtesting procedures for the different VaR
models to a wide array of assets of different nature,

comparing the relevance of the assumed probability distribution
for return innovations and the volatility specification for VaR
performance,

introducing a dominance criterion to establish a ranking of models
on the basis of their behavior under standard VaR validation tests,
and

using the dominance criterion and the Model Confidence Set
approach to search for robust conclusions on the preference of
some probability distributions and volatility specifications.

Two clear results refer to issues that have been analyzed in previous
research by a number of authors:

1.

VaR models that assume asymmetric probability distributions for return
innovations, like the skewed Student-t distribution, skewed Gen-
eralized Error distribution, Johnson SU distribution, and skewed
Generalized-t distribution achieve better VaR performance than
models with symmetric distributions, and

volatility models with leverage, like APARCH and FGARCH, show a
better VaR performance than more standard GARCH and GJR-GARCH
volatility specifications. Our analysis highlights other important
issues.

A third result is that the shape and the skew of the assumed probability
distribution for innovations are even more important for the performan-
ce of a Value at Risk model than including a leverage effect in volatility.
This corroborates results by previous authors. We provide a thorough
analysis of this issue by showing that the result holds for the wide set of
assets we have considered:
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a) the frequency of rejections of VaR tests in models that differ in
their volatility specification is similar, while rejection frequencies
among models with the same volatility specification but a
different probability distribution for the innovations can differ
very significantly,

b) changing the probability distribution in a VaR model affects the
p-value of the statistic for VaR tests by a larger amount than
changing the volatility specification, and

c) the dominance criterion we have introduced in this chapter
establishes a clear ranking between models differing in their
probability distribution, while the distinction between models
that differ in their volatility specification is much less clear.

A fourth result deals with the fact that our estimates suggest that for a
number of financial assets the true, unobserved volatility dynamics should
not be specified in terms of the squared conditional standard deviation.
Hence, models specified for the conditional variance are prone to pro-
duce biased results. Dealing with the power of the conditional standard
deviation as a free parameter is an important feature of the APARCH/
FGARCH volatility specifications that explains their better performance
in validation tests of VaR forecasts.

A final result emerges from the consideration of the different criteria
used in the chapter to choose among models for VaR estimation: the
combination of APARCH or FGARCH volatility with a skewed Generalized
Error, skewed Generalized-t or Johnson SU distributions seem to be have
the best VaR performance for a wide array of assets of different nature.

In Chapter 3 we estimate the conditional Expected Shortfall based on
the Extreme Value Theory (EVT) approach using asymmetric probability
distributions for return innovations, and we analyze the accuracy of
our estimates at 1- and 10-day horizons, before and during the 2008
financial crisis, using daily data. We take into account volatility clustering
and leverage effects in return volatility by using the APARCH model
under different probability distributions assumed for the standardized
innovations: Gaussian, Student-t, skewed Student-t, skewed generalized
error and Johnson SU and under EVT methods, following the two-
step procedure of McNeil & Frey (2000). This two-step procedure fits a
Generalized Pareto Distribution to the extreme values of the standardized
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residuals generated by APARCH models. This two-step procedure fits a
Generalized Pareto Distribution to the extreme values of the standardized
residuals generated by APARCH models. Then, we compare the one-
step-ahead out-of-sample ES forecast performance of all these models
for different significance levels (a). Previously existing backtesting for
ES have been shown to have serious limitations [as McNeil & Frey
(2000) test, Berkowitz (2001) test, Kerkhof and Melenberg (2004)
test and Wong (2008) test]. Such limitations are overcome by some
recent ES backtesting proposals that we use for ES evaluation: the
Righi & Ceretta (2013) test, two tests by Acerbi & Szekely (2014)
that are straightforward but require simulation analysis (like the
Righi & Ceretta test), the test of Graham €& Pal (2014), which is an
extension of the Lugannani-Rice approach of Wong, the quantile-
space unconditional coverage test of Costanzino & Curran (2015)
for the family of Spectral Risk Measures, of which ES is a member
and, finally, the conditional test of Du & Escanciano (2016).

This chapter contributes to the literature in different ways:

i) comparing the performance of the standard parametric approach
with two alternatives to ES forecasting that take into account
volatility clustering and asymmetric returns: EVT and the semi-
parametric Filtered Historical Simulation,

ii) comparing the results obtained under asymmetric probability
distributions for return innovations with results under Normal
and Student-t distributions,

iii) using the APARCH volatility specification because of its greater
flexibility to represent the dynamics of conditional volatility
(Garcia-Jorcano and Novales, 2017),

iv) forecasting VaR and ES over a 10-day horizon as in Basel
capital requirements and test ES forecasting models at this
horizon, an analysis that has seldom been considered in the
financial literature, and

%) analyzing the accuracy of risk models for ES forecasting
during pre-crisis and crisis periods as well as under different
significance levels. To the best of our knowledge, this is the
first time that a systematic test of ES forecasting models is
done considering a variety of probability distributions and
two alternatives to the standard parametric approach, like
EVT and the semi-parametric FHS.
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We obtain the following conclusions:

i)

ii)

iii)

iv)

in standard conditional models fitted to the full distribution of
return innovations we observe that asymmetric distributions
play an important role in capturing tail risk at 1-day and 10-
day horizons. This is because the stylized facts of financial
returns such as volatility clusters, heavy tails and asymmetry
are suitably captured by these asymmetric distributions.
applying EVT to return innovations by modeling the tail with
a GPD we obtain good ES forecasts at 1- and 10-day horizons
regardless of the probability distribution used for returns. So,
it looks as if considering just the return innovations in the
tail of the distribution is more important than discriminating
among probability distributions when forecasting ES.

using Filtered Historical Simulation can be very useful. First,
qualitative results under FHS in favor of the use of EVT in
VaR and ES estimation are consistent with those obtained
under the parametric approach, which is reassuring. Second,
ES forecasts are much more similar for different probability
distributions, as well as between forecasts from EVT-
based models and non-EVT based models. That implies a
considerable reduction in model risk.

even during the crisis period, conditional EVT models are
more accurate and reliable for predicting asset risk losses
than conditional models that do not incorporate the EVT
approach. However, during the crisis there is a systematic
undervaluation of risk in both classes of models, with a
number of violations above the theoretical one, suggesting
that the models do not fully adapt to the occurrence of tail
events. In general, p-values obtained in all tests during the
pre-crisis period are higher than those obtained in the crisis
period, suggesting a higher questioning of the models for ES
forecasting over the crisis period.
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CHAPTER |. PROBABILITY-UNBIASED VAR ESTIMATOR

1.1. Introduction

Value at Risk (VaR) has long been the most popular risk measure for the
risk management of financial asset/portfolios. The Basel requirements
for risk evaluation require the use of additional measures like Expected
Shortfall, whose estimation is conditional on a previous VaR estimate.
Hence, the ability to have good VaR estimates remains a central issue in
risk management. The parametric approach to VaR estimation proceeds
in two steps. First, the unknown parameters in the assumed probabili-
ty distribution for portfolio returns are estimated from sample data by
statistical methods. In the second step, these estimates are treated as the
true parameter values and they are taken to the mathematical expres-
sion for VaR in the specific model considered to compute the desired
distribution percentile. This is called a plug-in quantile estimator. It is
well-known that this procedure is not efficient because the highly non-
linear mapping from model parameters to the risk-measure introduces
some biases. Statistical experiments show that such bias leads to a sys-
tematic underestimation of risk.

The quality of VaR estimates is controlled by backtesting. The tests to
be conducted are usually given by the regulator (Basel Committee on
Banking Supervision (BCBS), 2016). Even under the current emphasis
on Expected Shortfall (ES) as the main current risk measure sanctioned
by BCBS, backtesting is required only on VaR. There are two reasons
for that: 1) a good VaR estimate is a needed condition for a precise
ES estimate, and 2) the unavailability of simple tools for evaluation
of ES forecasts. To backtest VaR the so-called failure rate procedure is
often considered. This procedure focus on the rate of exceptions, i.e.
ratio of scenarios in which the estimated capital reserve turns out to be
insufficient. More precisely, given a data sample of size n, we start by
estimating VaR at level a%. Then, we count how many times the actual
return over the testing period exceeded the VaR estimate. Under a good
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estimator we should observe that the relative frequency of exceptions
should be close to a%.

The backtesting procedure crucially depends on the availability of his-
torical data. This is most problematic if we only have available a small
sample of historical data on a given asset or portfolio. There are several
reasons why we have small samples: (i) the risk of the asset/portfolio
under consideration may be determined by an instrument that has been
issued recently, (ii) conditions for the evolution of some market may
have changed and statistical analysis of historical data from the period
preceding this change can not be expected to give a correct information
about the probabilities of future changes, and (iii) the access to historical
data for some instrument may be limited.

The question is: how can we estimate a quantile of an unknown proba-
bility distribution, if all we have is a small sample from this distribution?

The main goal of this chapter is to define a probability-unbiased VaR
estimator in such a way that it behaves well under various backtesting
procedures. We follow Francioni and Herzog, “Probability-unbiased Va-
lue-at-Risk estimators” (2012) in using probability unbiasedness as the
criterion to search for good VaR estimates. VaR performance for each
procedure is assessed by comparing the observed number of viola-
tions of the quantile estimator with the theoretical frequency. The
VaR estimator should be unbiased regarding the relative frequen-
cy of violations of the quantile.

We use a non-parametric method (bootstrapping) introduced by
Francioni and Herzog for the calculation of the probability-unbiased
VaR estimator for the Normal distribution. These authors show how
to change the probability level in the plug-in quantile estimator such
that the resulting plug-in estimator is unbiased in probability. We
extend their approach to other distributions such as Student-t and
mixture of Normals. We also show how to use the parametric method
to calculate the probability-unbiased VaR in the Normal case. This is
possible because under Normality we can use the probability distri-
butions of the parameter estimates to obtain a closed-form expression
for the probability-unbiased VaR estimator.
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We show that the use of probability-unbiased VaR avoids the systematic
underestimation of risk implied by the bias of standard VaR measures in
small samples. The magnitude of the distortion that needs to be exerted
on the quantile to move from the plug-in VaR to the probability-unbia-
sed VaR depends on the sample size and on the distribution assumption
on returns. Our results suggest that using a small sample may easily lead
to more accurate VaR estimates than a historical estimator based on long
samples, according to VaR performance measures such that the Probabi-
lity of Exceedance and the Observed Absolute Deviation per year. Short
samples are more robust to the structural changes that may arise over
time in financial returns due to trading behavior.

1.2. A review of literature

Estimation of risk measures is an area of highest importance in the
financial industry since such measures play a major role in the risk-
management and the computation of regulatory capital. For an in-depth
treatment of the topic, see textbooks by McNeil, Frey and Embrechts
(2005), and Alexander (2009). In particular, Embrechts and Hofert (2014)
highlight that a major part of quantitative risk management is actua-
lly of a statistical nature. Statistical aspects in the estimation of risk
measures have recently raised a lot of attention, see Acerbi and Szekely
(2007), Davis (2014), Emmer et al. (2015), Du and Escanciano (2016),
Costanzino and Curran (2015), Fissler et al. (2015) and Ziegel (2016). A
careful analysis shows that in general risk estimators are biased, and
they systematically underestimate risk.

Therefore, the occurrence of biases in risk estimation plays an impor-
tant role in practice. The Basel III document suggests to change 10-day
ahead Value at Risk at 99% confidence level by Expected Shortfall and
to consider stressed scenarios where the risk level is set at 97.5%. Un-
fortunately, such a correction may reduce the bias only in the right
scenarios. On the other hand, while the classical (statistical) concept
of unbiasedness is always desirable from a theoretical point of view,
it might be not prioritized by financial institutions or regulators, for
whom backtests are the main source of estimation accuracy. Our goal
is to obtain probability-unbiased estimators that perform the standard
backtesting procedure proposed by Basel properly, i.e. with an expected
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failure rate that is close to the theoretical VaR level a under non-Normal
distributions.

Surprisingly, it turns out that the statistical properties of risk estimators
have not yet been analyzed thoroughly. Schaller (2002) discussed the
relevance of parameter uncertainty for VaR estimation under the assump-
tion of Normally distributed data, proposing a correction to the standard
VaR estimator. But the author restricts his attention to the uncertain-
ty in the estimation of the variance without considering the uncertainty
in mean estimation. Francioni and Herzog (2012) introduced the princi-
ple of probability unbiasedness and they derived the distribution of the
VaR estimator distribution the parametric case for Normally distributed
data. Their approach consists on computing an appropriate distortion
for the desired significance level so that the resulting VaR estimate will
be unbiased in probability. Additionally, they calculate approximate
VaR confidence bands. Pitera and Schmidt (2016) propose a different
methodology to obtain an unbiased VaR estimator under Normality.
They propose a bootstrap algorithm to obtain unbiased estimators by
distorting the estimated parameters of the distribution instead of the
VaR significance level (a).

Moreover, as for any other statistical estimator based on a finite amount
of data, the VaR estimator has a distribution that depends on the obser-
ved realization and the amount of data. This dependence on the number
of observations has been recognized by others authors, such as Baysal
and Staum (2008), and Chana and Peng (2006). In these two papers, the
confidence bands for VaR were derived using Monte Carlo methods.
Baysal and Staum (2008) introduce probability unbiasedness only with
respect to the asymptotic distribution of the confidence intervals. Only
asymptotically probability-unbiased confidence bands were obtained in
both papers.

We adapt the VaR estimator and the confidence band of the VaR estimator
such that both become probability unbiased, as Francioni and Herzog
(2012) suggest for the case of the Normal distribution, extending their
analysis to distributions different from Normal, such as Student-t and
Mixtures of two Normal distributions.



Sample Size, Skewness and Leverage Effects in Value at Risk and Expected Shortfall Estimation

1.3. Quantile or VaR estimator

As specified Francioni and Herzog (2012) we describe the concepts
associated to the probability unbiased estimation of Value at Risk.

Let us suppose that X is an absolutely continuous random variable with
distribution function F,, where 6 is a parameter vector. The o quantile Q,
of X is defined as Q = F,”(«). By definition, the quantile has the proper-
ty that F,(Q) = a. This equation represents the intuitive concept of the
quantile as a threshold that is exceeded with probability a. The quantile
Q_ of the distribution of returns of a given financial asset or portfolio
is known as the Value at Risk (VaR) at the level a or at the confidence
level 1—a.

We assume that the parameter vector d can be estimated by any method
like Maximum Likelihood, Generalized Method of Moments or others in
such a way that the observed data are well described. We will assume
that estimator to be at least consistent.

In a general estimation setup, a plug-in estimator for a function g(6)
is an estimator obtained by replacing the parameter € in the function
by an estimate, that is

9(0) =g

The quantile Q can be seen as a function of the parameter vector and the
significance level, Q = g(6, a).

The plug-in VaR estimator is the only method to estimate VaR under a
parametric approach, that is VaR, = Q, = g(H, a),

We aim at estimating the risk of the future position where 6 € © are unk-
nown. If & were known, we could directly compute the corresponding
VaR as a function of 0, g(0), specifically with F,, and we would not need
to consider the family of VaR, (9(6))sco.

Our aim is to estimate Q, in such a way that the estimator satisfies this
probabilistic ‘threshold property’ in the mean for a F,-distributed ran-
dom variable X for all 6, i.e.

2l
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Eg[Fo(Qu)] =

where E4 denotes the expectation operator under probability measure F,,
This is a standard unbiasedness condition on the probability of excee-
ding the VaR estimate Q . That probability is usually checked by bac-
ktesting. Unbiasedness would imply that the VaR estimate Q will be
exceeded with an expected probability equal to a.

Definition 1 An estimator g(0), obtained with sample observations
(X1,...,Xn)~Fg of g(0), is said to be probability unbiased with respect to a
random variable Z with distribution function FZ, if

F*(9(8)) = ¢ [F* (9(8) )]

holds for all 6.

In the case of a quantile/VaR estimation where all X;~"Fy,i = 1,...,n, g(6),
is the a -quantile Q, Z is the next sample observation Z = X , and
F%is the probability distribution from which the sample has been ob-
tained. Hence, a probability-unbiased VaR estimator with respect to Z =

X, must satisfy
IE@[P(Xn+1 < Qa)] =a (1)

Unfortunately, under nonlinear mappings of the parameter vector 6, as
it is the case of the quantile, the plug-in procedure generally introduces
a small sample bias: E[P(Xpe < VaR,)| # a. The reason is that it treats
the estimated parameter vector as deterministic, even though 6 is a ran-
dom variable, a fact that must be incorporated into the estimation pro-
cedure in order to obtain probability-unbiasedness. As a consequence,
the equation, Q, = Fy (@) where 0 is an estimator of the parameter 6,
is only true asymptotically, i.e. as the number of observations goes to
infinity, provided the plug-in estimator is consistent

Va\Ra = Qa rg VaR, = Q. = Fa_l(a)

almost surely for each 8€0, so that this asymptotically unbiased.
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To obtain a probability-unbiased estimator for the quantile there are two
approaches,

1. Replacing the level a by a suitable chosen level a,,, to modify the
quantile of the estimated distribution. The VaR estimator will be

~ —

Qe =VaR, = g(é, apu) = Fé_l(apu)

where a,, is chosen so that equation (1) is fulfilled.

For example, if F is a Normal distribution, the VaR estimator can
be written

—

VaR, = i+ 6zapu

where (I and 6 are the estimated mean and standard deviation,
respectively, and Zapu is the inverse cumulative distribution function
of the standard Normal(0,1) for apu.

2. Modifying the vector of estimated parameters 8 of the distribution
Fto épu when computing the plug-in estimator

Qa = ma = g(épw a') = Fé_plu(a)

If F is a Normal distribution: épu = (Apw Opu), and the VaR
estimator would then be written as follows

VaRy = fipy + 0y 24

On the other hand, the plug-in estimator, which has been used in
the calculation of quantile / VaR is

P

VaR, = i+ 6z,

In this chapter we follow the first of these two approaches to calculate
the probability-unbiased VaR, and we use the second approach, when-
ever possible, to graph an approximation of the function F distorted
by modifying the parameter 6. Thus, we will be computing a probabili-
ty-unbiased estimator of VaR, that is, an estimator
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Qa = Fﬁo‘_l(apu)

where apu is chosen so that equation (1) is fulfilled.

1.4. Parametric and Non-Parametric methods

We can use parametric or non-parametric methods to find @pu. On the
one hand, parametric methods or classical statistical methods have
the basis for making inferences about the population in the theoreti-
cal sampling statistical distribution, whose parameters can be estimated
from the observed sample. On the other hand, there are different pro-
cedures based on non-parametric methods. Those procedures generate
samples from a set of observations constructing a sample distribution
that can be used for parameter estimation and confidence intervals.
Among them, the best known and most commonly used is the boot-
strap method. The first mention of this method under this name is due to
Efron (1979), although the same basic ideas came handling for at least a
decade ago (Simon, 1969). Efron conceived the bootstrap method as an
extension of “jackknife techniques”, which usually consist in extracting
samples ever constructed by removing one element of the original sam-
ple to assess the effect on certain statistical (Quenouille, 1949; Tukey,
1958; and Miller, 1974).

Unlike classical estimation methods, the bootstrap method does not
make any distributional assumptions for the theoretical statistic. Ins-
tead, the distribution of the statistic is determined by simulating a large
number of random samples constructed directly from observed data.
That is, the original sample is used to generate new samples as a ba-
sis for estimating inductively the sampling distribution of the statistic,
rather than deriving it from a theoretical distribution assumed a priori.
This method has an immediate predecessor in the techniques of Monte
Carlo simulation, consisting in extracting a large number of random
samples from a known population to calculate from them the value of
the statistic whose sampling distribution is intended to be estimated.
However, in practice the population is not known and the information
we have is a sample drawn from it.
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Definition 2 Bootstrapping (bootstrap) is a resampling method or al-
gorithm that consists in generating a large number of resamples using
sampling with replacement from an original random sample of size n
that represents the population from which it was extracted. Each resam-
ple is the same size as the original random sample. The resamples serve
as alternative population samples.

According to the main idea of bootstrap, the procedure involves using the
sample itself since we consider that it contains basic information about
the population. Therefore, the suitability of this method will be greater
when the sample contributes with more information about the popula-
tion. A direct consequence is that the longer the sample size, the better
the estimation about the sample distribution of a statistic. However, even
with small samples, between ten and twenty observations, the boots-
trap method can provide correct results (Bickel and Krieger, 1989) while
being unsuitable for samples with less than five (Chernick, 1999).

1.5. Normal Distribution

The VaR calculated by the parametric approach for a Normal distribu-
tion is Q, = U + 0z, where the parameter vector 8 = (y, ). To obtain
the plug-in VaR, the parameters of the Normal distribution are repla-
ced by their Maximum Likelihood estimates Q, = X + sz, where z, is
the inverse cumulative distribution function of a Normal(0,1), x is the
sample mean and s is the sample standard deviation. These statistics are
independent since the sample comes from a distribution N(y, ?)

(i3
Szjni1z(xi_f)2

For the Normal distribution, the statistical distributions are known,
where the distribution of sample mean is a Normal distribution,

X U, -
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and the distribution of variance is calculated as follows,

If we start from a simple random sample with distribution N(y,c?),
then

n—1

O' an

and therefore, the distribution of s? is

n—1 n—1
52)

2 2
n-—1 0_2 0_2

Note that the probability distribution of the two estimators depends on
the size of the sample, n. The estimator x is unbiased, and s? is consiss
tent (Casella and Berger, 2002).

To obtain E[P(X,.; < VaR,)| = a, we have,

X — X+ sz, — X — S
n+1 #< a ”):@( H_I__Za)

P(Xpi1 <%+ =P<
(n+1 X SZa) o o o o

so that,

E[P(X,y1 < VaR,)] = ]E[ (x a” +2 za>] _

o (e ) (aw S s ()

where we have calculated the expectation of a continuous function of
two random variables

Blg (5] = [[ 9652)f o2 dids?

where 'f z 52 is the joint density function of two random variables. As %
and s* are independent, the joint density function is just the product of
the density functions of each variable,
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_o*\, m—-1 \n-—1
v (#0 Ji (57)

In (2) we do the following change of variable,

0.2
— 2 2
Y = = s¢ ds _n—ldY

The density function of X relates to that of the sample mean by

o? nl _n .. n 1 n 1 1
N(E|MI_> =\/___e 20-2(x I'l')z =\/—_—e_7X2 =—N<X|0’—>

n O 21 0 21 o n
Therefore, the equation that defines apu with Maximum Likelihood
estimator for the Normal distribution is

Y

1
2 —
.[.[ o X+ mzaw N (Xlo,;) Xn_l(Y)dXdY =a (3)

Notice that equation (3) only depends on a and n, but it does not de-
pend on @, i.e. p and o. Non-dependence on & arises under the Normal
distribution because of its strong invariance structure. Being a location-
scale distribution, we can reduce it to a standard Normal distribution
that does not depend on these parameters. This property is important
because estimation of the parameter & make the VaR estimator to be just
an approximation to the probability-unbiased VaR.

Therefore, the apu is unique for each sample size (1) and for each prob-
ability a and it does not vary from one sample to another of equal size
because the function (3) does not depend on the distribution parameters.
The VaR obtained with each of these @pu will be probability-unbiased,
that is, E[VaR| = VaR.
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To sum up, if the probability distribution from which we draw indepen-
dent sample realizations belongs to the location-scale family, then we
will be able to find an @pu such that the VaR is unbiased.

Table 1 lists the probabilities @pu obtained from equation (3), as a func-
tion of the sample size n and the value of a’. We can see that a,, — «
when n — oo, For instance, under the estimated probability distribution
for a sample size n = 20, the 3.82% quantile has a 5% probability of be-
ing exceeded by a future observation drawn from the full distribution of
returns. As we can see, for small sample sizes the estimated distribution
function from a Normal sample is much heavier tailed than the Normal
distribution associated to the plug-in estimator. As a consequence, the
plug-in VaR estimator underestimates risk.

Table 2 presents the reverse question: What is the o associated to a giv-
en %pu? Now, at 5% significance and n = 20, the plug-in VaR estimate
would have a 6.25% probability of being exceeded by a future sample
observation from the full distribution of returns. We observe that the
differences are greater when we have small sample sizes and we can also
observe that a,, = @ when n — oo.

Table I: Probabilities o, (%) to be used to obtain the probability-unbiased VaR,
for different values of o and ; in the ii.d. Normal distribution case

a (%)
n 0.5 1 5 10
10 0.033 0.154 2.727 7.345
15 0.105 0.336 3.445 8.239
20 0.169 0.463 3.821 8.683
25 0.217 0.552 4.051 8.948
50 0.340 0.757 4.520 9.476
100 0.415 0.874 4.759 9.738
150 0.442 0.915 4.839 9.826
200 0.456 0.936 4.879 9.869

1. The probabilities a,, were obtained implicitly, by searching for the a,, that make the double integral in

(3) equal to o for a given sample size. Calculations were performed with Mathematica software 9.0.
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Table 2: Shortfall probabilities « (o0) that the next observation will be lower than
the plug-in VaR estimate Za,,, in the ii.d. Normal distribution case

apu (%)
n 0.5 1 5 10
10 1.820 2.686 7.563 12.639
15 1.288 2.043 6.678 11.752
20 1.056 1.751 6.247 11.312
25 0.928 1.585 5.992 11.048
50 0.697 1.277 5.490 10.523
100 0.594 1.134 5.243 10.261
150 0.562 1.089 5.162 10.174
200 0.546 1.066 5.121 10.130

Figure 1 graphs the distortion function for different sample sizes (grey
line). It corroborates the fact that, as we have more observations, the
correction in the probability level is smaller and the distortion function
converges to the identity (black line). This distortion function describes
how probabilities need to be changed in the plug-in quantile estimator
such that the plug-in estimator becomes probability-unbiased. Figure
2 shows the distortion of the quantiles of the standard Normal distri-
bution function which describes how the plug-in estimate of the cu-
mulative density function has to be changed for a given sample size »
such that the estimate becomes probability-unbiased. In both figures,
we only represent the left extreme quantiles, but it would be possible
to enlarge the graph to represent the entire distribution. In Figure 2 we
observe that for more extreme quantiles the distortion is greater, i.e.
the differences between o and @pu are larger. Also, ®pu is always lower
than a, in other words, probability-unbiased VaR is greater (in absolute
value) than plug-in VaR. The latter underestimates the extreme events
and, therefore, is not an appropriate method to estimate risk measure
with small samples.
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Figure I: Distortion function for the Normal distribution calculated with the para-

metric method. The diagonal (black line) represents no distortion
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Figure 2: The quantiles of the Normal cdf versus the quantiles of the distorted
Normal cdf calculated with the parametric method. The diagonal (black line)
represents no distortion
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1.5.1. Parametric probability-unbiased VaR estimator for a Normal
distribution

We now turn to the estimation of VaR itself. We apply the first ap-
proach described in Section 1.3 to estimate the probability-unbiased
VaR, which implies a modification of the quantile, replacing o by %pu.
Table 3 shows the probability-unbiased VaR, (VaR,,) and the plug-in
VaR, (VaRypg-in) obtained for different sample sizes and a’s. We can see
that plug-in VaR, underestimates risk, indicating smaller losses than we
should really expect with a% probability. Thus, for instance, for a random
sample of size 25, the maximum expected loss with 95% probability or,
equivalently, the minimum loss with a 5% is not 1.844, but 1.949.

The calculation of probability-unbiased VaR is particularly relevant for
small sample sizes, when the difference in the estimation of VaR is hig-
her than for large samples, for which the probability-unbiased VaR, and
the plug-in VaR, are very similar.

Now, we follow the second approach described in Section 1.3, to obtain
the probability-unbiased VaR estimator by calculating the standard de-
viation of 6,,, the distorted distribution function F.

If F is a Normal distribution, the probability-unbiased VaR estimator can
be written in two alternative ways:

VaRy, = flpy + 0pyzq = 1+ 0Zq,,

Table 3: Probability-unbiased VaR,, versus plug-in VaR,, in the case of Normal (O.l)

Var VaRr . ..
n 0.5 1 5 10 0.5 1 5 10
10 -3.227 -2.786 -1.768 -1.305 -2.409 -2.165 -1.496 -1.139
15 -2.796  -2.440 -1.570 -1.150 -2.309 -2.065 -1.400 -1.045
20 -3.206 -2.866 -2.011 -1.587 -2.839 -2.582 -1.880 -1.506
25 -3.117 -2.789 -1.949 -1.527 -2.825 -2.562 -1.844 -1.461
50 -2.925 -2.624 -1.827 -1.415 -2.783 -2.513 -1.775 -1.382
100 -2.546 -2.307 -1.666 -1.329 -2.488 -2.262 -1.645 -1.316
150 -2.621 -2.374 -1.705 -1.352 -2.581 -2.342 -1.690 -1.343
200 -2.393 -2.165 -1.547 -1.220 -2.365 -2.143 -1.537 -1.213
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that illustrate the two equivalent approaches to probability-unbiased
VaR estimation: either we distort the quantile and use the estimated
parameters or we maintain the original quantile while distorting the
estimated parameters. This equation also shows that once we have cal-
culated %pu we can obtain OZay, and viceversa.

Since the mean of the distribution is very low in high frequency returns
and it is estimated with very low precision, we can consider it to be the
same for the distorted distribution as for the original distribution, i.e.
fipu = {1 Then, we will calculate the standard deviation &, of the dis-
torted distribution function implicitly so that the previous equation
holds. That standard deviation will be different for every a and for each
sample size (n) because VaR, also changes with a and with .

Table 4 shows the 6,,, values obtained for different o and n. Notice that
G,y is greater for small sample sizes suggesting the heavier tails of the
distorted distribution. For a given sample size, we obtain larger differences
between 6 and 6,,, for the more extreme quantiles. For a given o, we obtain
greater differences between 6 and 6,,, for small sample sizes. As the sample
size increases the 6,,’s move closer to the sample standard deviation
(6 = s) for any « and, therefore, closer to the population standard deviation, 1.
At n = 200 we see a distortion produced by estimating the mean. Had we
set i = 0 when calculating the parametric VaR estimate, we would get 6,
converging to 6 and hence, to g, the population standard deviation, which
is equal to 1, as the sample size increases.

Figure 3 shows the true density function of a random variable N(0,1) (sol-
id line), the density function of the Normal distribution with the param-
eters estimated from a random sample of size 15 extracted from a N(0,1)
(dashed line), and the density function of the distorted estimated distri-
bution function using the 4, estimate (dotted line). We can see that the
distorted distribution function has heavier tails, which should allow for a
better fit to most asset returns. The probability-unbiased VaR (black circle)
indicates higher losses than plug-in VaR (black triangle). In other words,
the plug-in estimator underestimates risk. This will generally be the case
with small size samples. Besides, the smaller the sample size the greater
the correction or adjustment needed on the probability distribution.
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Table 4: Estimated standard deviations for the distorted distribution function

o(%)
n 0.5 1 5 10
10 1.299 1.248 1.147 1.111
15 1.165 1.137 1.079 1.058
20 1.172 1.152 1.109 1.093
25 1.167 1.151 1.118 1.105
50 1.138 1.130 1.114 1.108
100 0.928 0.925 0.919 0.916
150 0.972 0.970 0.966 0.964
200 0.901 0.899 0.8965 0.895

Figure 3: The true N(Ol) pdf (solid lin€), the plug-in pdf (dashed line) and the
pdf of the unbiased cdf (dotted line). On the horizontal axis the data points
for the true VaR.,, (black square), the plug-in VaR.,, (black triangle) and

the probability-unbiased VaR.,, (black circle) are plotted
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Figure 4 shows the cumulative distribution function of N(0,1) (solid
line), the plug-in cumulative distribution function (dashed line) and the
unbiased cumulative distribution function (dotted line). It also displays
VaR estimates at 5% significance level. As Figure 3, these representa-
tions are based on the estimates obtained from a random sample of size
15. The smaller the sample size the larger the distortion in the plug-in
distribution function.

Figure 4: The true N(O.l) cdf (solid line), the plug-in cdf (dashed line) and the
unbiased cdf (dotted line). On the horizontal axis the data points for the true VaR.,
(black square), the plug-in VaR.,, (black triangle) and the probability-unbiased
m5% (black circle) are plotted

cdf normal, n=15

cd!

auantile

Figures 5 and 6 show pdf’s and cdf’s, respectively, for different sample si-
zes. We also show the plug-in VaRs, and the probability-unbiased VaRss.
These Figures show the convergence of the plug-in distribution and the
probability-unbiased distribution to the true distribution as the sample
size increases.
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Figure 5: Enlarged left tail of the true N(O,l) pdf (solid lin€), the plug-in pdf (dashed
line) and the pdf of the unbiased cdf (dotted line) for different sample sizes. On the
horizontal axis the data points for the true VaR,,, (black square), the plug-in VaR.,
(black triangle) and the probability-unbiased ms% (black circle) are plotted
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1.5.2. A comparison of parametric estimates of probability-unbiased
VaR and plug-in VaR under Normality

We now compare the exceedance probabilities obtained from probability-
unbiased VaR and plug-in VaR. We simulate the estimation of the plug-in
VaR estimator and the probability- unbiased VaR estimator and calculate the
exceedance probabilities. According to the argument in the previous sec-
tion, we expect to obtain a number of exceedances for probability-unbiased
VaR to be close to the theoretical o regardless of the sample size considered.

The Monte-Carlo exercise with S simulations is performed using the
following steps:

1. Set the counter of the simulation s = 0.

2. Increment the counter of the simulation s = s + 1.

3. Simulate normally distributed data with n + 1 observations and
predefined values of p and o.

4. Estimate the mean and the standard deviation based on the first
n data points.

5. Calculate the plug-in VaR estimator. Calculate the probability-
unbiased VaR estimator using the Apu from Table 1 for the 4 and
o estimates in step 4.

6. Check if the n + 1 data point is smaller than the plug-in VaR and
the probability- unbiased VaR estimators. When the data point is
smaller (VaR exceedance) record a 1, otherwise a 0.

7. Return to step 2 while s < S.

8. Calculate the exceedance probability by summing the recorded
values and dividing them by the number of simulations S.

The results in Table 5 for samples of size 10, 15, 20 and 25, for VaR,q,
and VaR sy, withp =0, o = 1 and S = 100000, show that the probability
of a VaR exceedance from the probability-unbiased estimator is close to
the theoretical values of 1% and 5%.

However, the probability of a VaR exceedance for the plug-in VaR differs
than the theoretical probability. This confirms the results presented in
Table 1. As the sample size increases, the probability of an excess from
the plug-in VaR estimator calculated from the simulations approaches the
theoretical value. For the probability-unbiased VaR estimator, probability
remains similar to the theoretical probability for all sample sizes.
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Table 5: The shortfall probabilities 0.% with which the next observation is always
lower than the plug-in VaR and the probability-unbiased VaR in the Monte-Carlo
simulation for the Normal distribution

n 1% plug-in 1% pu 5% plug-in 5% pu
10 2.674 0.985 7.567 5.015
15 2.063 0.953 6.748 5.047
20 1.825 1.028 6.268 5.038
25 1.608 0.999 5.978 4.930

1.5.3. Non-parametric (Bootstrapping) estimation of probability-
unbiased VaR

In the previous section we have calculated g, analytically, corrobo-
rating that the exceedance probabilities obtained from probability-un-
biased VaR are closer to theoretical a than those obtained from plug-in
VaR for all sample sizes. We lack a closed-form solution for unbiased
estimators for other distributions, such as Student-t and Mixture of two
Normals, because the statistical distributions of the sample parameters
are unknown, so that the bootstrap algorithm proposed by FH is extre-
mely useful. In this subsection, we use that algorithm to calculate o,
for Normal distributions, as FH propose, and we compare the results
obtained with this method and the analytical method.

The algorithm proposed by FH when sampling from a Normal distribu-
tion replaces the level a by a suitably chosen level 4, so as to mini-
mize the average distance between the bootstrapped estimators and a.
The o, obtained through resampling will change with the sample size
(n), the significance level o and the observed values in the sample. The
algorithm approximates the ¢, level and achieves an approximation to
the probability-unbiased VaR through a modification of the significance
level. The change from a to o, corrects the fact that we do not obser-
ve infinite realizations. For a large number of observations the plug-in
estimator and the probability-unbiased estimator become very similar.
The plug-in estimator has good properties only asymptotically, while the
probability-unbiased estimator is a good estimator even in short samples.
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Suppose we have a random sample of size n drawn from a distribution
F,. Then, we generate B resamples of the same size n. These resamples are
obtained by sampling with replacement. The steps to be performed are:

1. From observed values X, ..., X ~""*F,
2. Estimate 0 = 0(X, ..., X))
3. For i=1:B
Samples ){1, sy X from ng
Estimate 0:

Find the ¢, that minimizes the following objective function
1 B
Apy = argmin, Ez F3 (Fa_;l (y)) —-a (4)
i=1

The level of Ay is chosen so that equation (1) is satisfied. Substituting a
for q,, obtain the probability-unbiased VaR estimator.

We start with a random sample of size n generated from a Normal
distribution with mean O and standard deviation 1. From this original
random sample we obtain 10000 resamples of size n. As we increase the
sample size, the Maximum Likelihood estimates of mean and standard
deviation of the original random sample, p, and o,, tend to the popula-
tion average (1, = 0) and the population standard deviation (o, = 1). For
each resample we estimate the mean and the standard deviation, obtai-
ning 10000 means and 10000 standard deviations. These estimates are
used to find the A that minimizes the objective function (4).

We have shown that for a Normal distribution it is possible to obtain
a closed-form solution for probability-unbiased VaR. But for other

2. Notice that the samples must be resamples of the original sample (our observed values) for three rea-
sons: 1) if the samples were generated from the distribution function estimated with the original sample,
we would obtain from each resample very different values of ;, especially with small sample sizes, and we
would have to draw many samples to obtain suitable results. Indeed, even extracting 100000 samples from
Fywe have not obtained the expected results, and ap, does not tend to a when # tends to %, 2) we have just
one random sample, possibly of small size, and we cannot use classical statistical inference to find the sam-
pling distribution because we do not know the parameters of the population distribution and we cannot take
the estimated parameters as population parameters. Therefore, to find the sampling distribution, at least ap-
proximately, we create many resamples by repeatedly sampling with replacement from the original random
sample. Each resample has the same size as the original random sample, and 3) a bootstrap algorithm is ba-
sed on a large number of new samples obtained by sampling from the original sample, not by simulation.
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distributions for which the probability distributions of estimated para-
meters are either unknown or they are difficult to obtain, we suggest
using this bootstrap algorithm. In particular, we will use below the FH
algorithm to calculate probability-unbiased VaR for Student-t distribu-
tions as well as for a mixture of two Normal distributions.

1.6. Student-t Distribution

1.6.1. Probability-unbiased VaR estimator for a Student-t distribution

We assume that we have a finite-short sample from a Student-t distri-
bution function (Fg]. Following Francioni and Herzog, the VaR estimator
is a modification on the a-quantile from the estimated distribution. We
replace a by ap, thereby taking a quantile of the estimated probability
distribution different from a.

Hence, if F is a t-Student distribution, the VaR estimator can be written:
VaR, =t ' (apy)

where a,,, is chosen so that the equation Eg[P (X;41) < 0] = a is
satisfied. The @y, approximation is obtained by a bootstrap algorithm.
The change of a for ay,, corrects for the fact that do not observe infinite
realizations. The probability-unbiased VaR estimator can be obtained for
any sample size, including small sample sizes, while the estimator plug-in
is only probability-unbiased when n — .

We start with a random sample of size n generated from a Student-t
distribution with 2 degrees of freedom. This is the original random sam-
ple from which we will generate 10000 resamples of sample size n. The
parameter to be estimated in this distribution is the number of degrees
of freedom. We use a method of moments estimator: v = 0220_1 because of
its simplicity although it requires that the distribution has a variance
greater than 1°. For each resample, we estimate the number of degrees of

3. An alternative estimator might combine two different GMM estimators based on the variance and the
kurtosis of the sample. However, often the number of estimated degrees of freedom is below 4, not allowing
for the use of the kurtosis estimator.
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freedom, which is then used to find the a,, value solving the previously
established equation (4).

Table 6 contains probabilities ay, for the different values of a and » in
the i.i.d. Studen-t distribution case with 2 degrees of freedom. This ta-
ble shows that a,, — a as n — oo. Comparing Table 1, probabilities a,,
obtained from closed-formed solution for Normal distribution case, with
Table 6, we observe the convergence under the Student-t distribution is
faster than under the Normal, and for small sample sizes we obtain an
apy closer to the theoretical o than under the Normal distribution. This
is because the higher kurtosis of the Student-t distribution makes more
likely the occurrence of extreme events, so that the correction needed
on « is smaller.

Table 6: Probabilities a,,(%) to be used to obtain a probability-unbiased VaRq for
different values of « and » in the i.i.d. Student-t distribution case

o (%)

n 0.5 1 5 10
10 0.071 0.332 3.865 8.903
15 0.227 0.639 4.470 9.490
20 0.357 0.798 4.663 9.668
25 0.363 0.804 4.656 9.654
50 0.373 0.821 4.701 9.706
100 0.389 0.833 4.784 9.776
150 0.450 0.926 4.862 9.858
200 0.445 0.919 4.855 9.853

Table 7 lists VaR, probability-unbiased, (VaR,,), and VaR, plug-in (the
usual VaR estimate) obtained for different sample sizes and «’s. This ta-
ble shows that the plug-in VaR, underestimates risk for any probability
level a%. As with the Normal distribution, the calculation of probability-
unbiased VaR is especially relevant for small sample sizes although in
this case, differences between both VaR estimates are larger.
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Table 7: Probability-unbiased VaR, versus plug-in ma in the case of Student-t
distribution

n 0.5 1 5 10 0.5 1 5 10
10 -17.102 -8.949 -2975 -1.885 -7.515 -5.564 -2.609 -1.752
15 -14.275 -8.533 -3.078 -1.940 -9.650 -6.808 -2.887 -1.872

20 -7.928 -5.716 -2.612 -1.750 -6.919 -5.205 -2.522 -1.714
25 -9.530 -6.635 -2.815 -1.838 -8.247 -5.997 -2.709 -1.796
50 -7.437 -5.448 -2.556 -1.727 -6.634 -5.031 -2.479 -1.695

100 -8.666 -6.198 -2.736 -1.805 -7.762 -5.711 -2.643 -1.767
150 -8.372 -6.054 -2.715 -1.798 -7.990 -5.846 -2.674 -1.781
200 -8.512 -6.128 -2.728 -1.804 -8.078 -5.898 -2.686 -1.786

1.7. Mixture of two Normal distributions
1.7.1. Probability-unbiased VaR estimator for Mixtures of Normal distributions

As an example, we consider a mixture of Normal distributions with di-
fferent mean and different standard deviation: N(-5,10) and N(0,1) with
mixing parameter p = 0.1. With so different Normal distributions and a
small p, the resulting mixture can capture potential extreme data much
better than a Normal distribution, which may provide a better fit to some
of the statistical characteristics observed in asset returns. Table 8 shows
moments for sample sizes 100, 200, 300 and 400. As a result of this mi-
xing, we obtain a distribution having a smaller mean, greater deviation
and largest kurtosis than the second Normal distribution. The quantiles
of a mixture distribution do not accept a closed form solution but rather,
they require solving an implicit equation. Therefore, to calculate the VaR
we cannot use the parametric approach. We then need to work with sam-
ples larger than in the case of Normal and t-Student distributions becau-
se both plug-in VaR and probability-unbiased VaR are now calculated as
a sample percentile. For example, if we want to compute the 1% percen-
tile, we must compute it from a sample of considerable size to avoid that
it might fall outside the data range. For instance, the prctile function of
MatLab would return the first value of the sample, in spite of the fact
that the first value might be significantly larger than the 1% percentile.
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Table 8: First four moments for samples of size 100, 200, 300 and 400 of
a mixture distribution of N(-5,10) and N(O,I) with a mixing parameter p = O.|

MIXTURE of N(-5,10) and N(0,1)

n Hmix Omix skewness, . kurtosis, .
100 -0.5274 3.8400 -3.0260 18.8137
200 -0.5415 3.4229 -4.9035 34.4905
300 -0.2653 2.7198 -2.1651 29.9570
400 -0.2644 3.4468 -2.6797 27.9013

Table 9 shows the a,, calculated from the bootstrap method to estimate
the probability-unbiased VaR. We again see that the 1% and 5% plug-in
VaR underestimate risk.

Table 9: Probabilities @,.(%) needed to obtain probability-unbiased VaR
for samples of size 100, 200, 300 and 400 of a mixture distribution of a
Normal(-5.10) and of a Normal(O,l) with mixing parameter p = O.I. We also show
the associated probability-unbiased VaR and plug-in VaR for a = 1% and a = 5%

o= 1% o= 5%

n Opu VaR , VaR ., Opu VaR VaR . ..
100  0.5806 -23.2413 -19.0515 4.6457 -6.6337 -5.5756
200 0.7963 -18.4699 -17.7663 4.6833 -2.2543 -1.8864
300 0.8333 -12.6246 -12.4064 4.8733 -2.1380 -2.1126
400 0.8677 -20.5952 -18.8131 4.8821 -2.7855 -2.6125

1.8. Empirical application and comparison with other VaR models

In this section we follow McNeil et al. (2005, chapter 2.3.6) to test di-
fferent VaR estimation methods using the last 1000 data observations
from a portfolio that invests 30% in the Financial Times 100 Shares
Index (FTSE 100), 40% in the Standard € Poor’s 500 (S&P 500) and 30%
in Swiss Market Index (SMI) between 1992 and 2003. We consider the
application of methods belonging to the general categories of varian-
ce-covariance and historical simulation methods to the portfolio of an
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investor in international equity indexes. The investor is assumed to have
domestic currency pound sterling (GBP) and to invest in FTSE 100, S&P
500 and SMI. The investor thus has currency exposure to US dollars
(USD) and Swiss francs (CHF) and the value of portfolio is influenced by
five risk factors (three log index values and two log exchange rates). We
standardize the total portfolio value V; in sterling to be one

Vt = 03 '.Xl + 04' (xZ + x4) —+ 03 " (.X3 + x5)

where x,, x, and x, represent log-returns on the three indexes and xr,
and x, are log-returns on the GBP/USD and GBP/CHF exchanges rates,
respectively.

The return series show little serial correlation, to the point that it is safe
to treat returns as being i.i.d.

The VaR estimation methods considered are,

* VC: The standard unconditional variance-covariance method
assuming multivariate Gaussian risk-factor changes.

¢ HS: The standard unconditional historical simulation method.

¢ VC-t: The standard unconditional variance-covariance method
assuming multivariate Student-t risk-factor changes.

* HS-GARCH: A conditional version of the historical simulation
method in which GARCH(1,1) models with a constant conditional
mean term and Gaussian innovations are fitted to the historically
simulated losses to estimate the volatility of the next day’s loss.

* VC-MGARCH: A conditional version of the variance-covariance
method in which a multivariate GARCH model (a first-order
constant conditional correlation model) with multivariate Normal
innovations is used to estimate the conditional covariance matrix
of the next day’s risk-factor changes.

e HS-EWMA: A conditional method, similar to HS-GARCH, in which
the EWMA method is used to estimate the conditional covariance
matrix of the next day’s risk- factor changes.

* VC-EWMA: A similar method to VC-MGARCH but a multivariate
version of the EWMA method is used to estimate the conditional
covariance matrix of the next day’s risk-factor changes.
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¢ HS-GARCH-t: A similar method to HS-GARCH but Student-t in-
novations are assumed in the GARCH model.

¢ VC-MGARCH-t: A similar method to VC-MGARCH but multivar-
iate Student-t innovations are used in the MGARCH model.

* HS-CONDEVT: A conditional method using a combination of
GARCH modeling and EVT (extreme value theory).

The characteristics of the distortion of « allows for efficiently esti-
mating the VaR quantile from a short amount of data to capture
the clusters in the data. This is relevant because extreme returns appear
in clusters (McNeil et al., 2005) and if we use the i.i.d. model with long
windows we will be likely to underestimate risk. VaR estimates would
then change very slowly, being unable to capture changes that may
occur in the market as soon as they happen.

On the contrary, calculation of the probability-unbiased VaR estimator
from short rolling windows under the i.i.d. approach has some advanta-
ges (Francioni and Herzog, 2012): i) only a few data points are needed
to obtain a very good VaR estimate and ii) this approach outperforms
other alternatives that need many data points to calibrate the model,
e.g. EWMA, GARCH, ... (at least 1000 data are necessary to calibrate the
models, McNeil et al., 2005). In fact, we have confirmed in previous sec-
tions results by Francioni and Herzog showing that the standard plug-in
VaR estimates of a Normal population is biased. We have also described
their suggestion to distort the significance level a so that the resulting
VaR estimate is unbiased, and we have extended their results to other
probability distributions.

We now calculate ay, values to obtain the probability-unbiased VaR
estimator in a rolling window of size n. We start with the simpler case
of the Normal distribution, a member of the location-scale family. Under
Normality there is no dependence on any additional parameter and we
can use ap, values provided in Table 1 (calculated by closed-form). The
Student-t has the number of degrees of freedom as an additional pa-
rameter, which we estimate by Maximum Likelihood first from portfolio
return data to subsequently calculate a,,, values®. A similar procedure is
followed for mixtures of two Normals, starting with the GMM estimation

4. The GMM parameter estimates for returns from this portfolio are p = -0.0020, p,= -0.0011, ¢,= -0.0020,
0,= -0.0214 and p = 0.2487, very different from those used in the simulation exercise.
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of the five additional parameters, K, W, o, o, and p, using portfolio
returns for then calculate ap,, values. We follow the algorithm proposed
by FH previously presented in the simulation exercises to obtain apy
values needed to calculate probability-unbiased VaR in each window of
size n. We propose mixtures of Normals as a more realistic distributions
to further improve the results obtained under the Normal distribution.

Table 10 shows the number of annual VaR exceedances for the i.i.d.
rolling window 5% VaR estimator under Normal and Student-t distri-
butions, for different sample sizes. Every year, that number is relatively
close to its expected value of 13 (aprox. 5% 260 days)®. The results in
Table 10 suggest that under a Student-t distribution, windows with n =
20, 25 and 50 data points are generally outperformed by the shorter »n
= 15 window. In particular, for 1993, 1994, 2000 and 2001 VaR is poorly
estimated under the Student-t distribution, with too many violations of
the 95% VaR estimates. In general, 2000, 2001 and 2002 were the most
difficult years to use in prediction for most models, since returns beca-
me very volatile, with many extreme losses. In the case of the Normal
distribution, n = 15 and »n = 25 perform better than n = 50.

For the mixture of two Normal distributions, the window with n = 100
outperforms longer window sizes especially during 1996, 1997 and
1998. We again work with samples larger than in the case of Normal
and Student-t distributions for reasons explained above.

When comparing the performance of the different models for VaR estima-
tion we look at estimates from 1996 through 2003, because that is the time
period considered by McNeil et al. (2005) with whom we want to compare
our results. We use rolling windows and calculate probability-unbiased VaR
estimator in each window. On the contrary, the models considered by Mc-
Neil et al. (2005) consider the full period (1996-2003) to calculate plug-in
VaR estimates. For the performance analysis, two different quantities are
calculated: i) the overall exceedance probability, defined as the number of
observed exceedances in the period divided by the number of data points,
i) the Observed Absolute Deviation per year (OAD), used by McNeil et al.
(2005), which was introduced by Francioni and Herzog as the mean of the
absolute difference between the expected number of exceedances (i.e. 3
for 1% VaR and 13 for 5% VaR) and the number of observed exceedances.

5. Except for 1992, when we lost n data observations due to the rolling window.
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Table 10: Number of 5% VaR exceedances per year for the iid. rolling window
model with window length #. Absolute differences between the expected humber
of exceedances (I3 per year) and the number of observed exceedances is reported
in parentheses

Normal Year

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

n=10 5(8) 5(8) 8(5 8() 8(5 6(7) 5(8) 40 94 3(10) 3(10 3(10)

n=15 7(6) 7(6) 8(5 11(2) 14 9(4) 11((2) 7(6) 12(1) 7(6) 8(5) 6(7)

n=20 7(6) 14(1) 11(2) 8(5) 12 10(3) 15(2) 9(4) 14(1) 14(1) 6(7) 8(5)

(1) )
(1) )

n=25 7(6) 18(5 12(1) 10(3) 13(0) 10(3) 13(0) 12(1) 13(0) 13(0) 9(4) 6(7)
(2) 15(2) 18(5) 11(2) 9(4)

n=50 7(6) 13(0) 17(4) 11(2) 15 12 (1) 14 (1) 11(2)

Student-t Year

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

n=10 8(5 12(1) 10(3) 13(0) 13 9(4) 10(3) 14(1) 17(4) 10(3) 11(2) 10(3)

n=15 8(5 15(2) 12(1) 12(1) 14

18 (5) 14 8 (5)

)

10(3) 15(2) 12(1) 15(2) 16(3) 13(0) 10 (3)
)
)

n=25 10(3) 19(6) 15(2) 11(2) 16 13(0) 18(5) 13(0) 17 (4

0)
(2)
n=20 9(4 19(6) 16(3) 10(3) 15(2) 14(1) 17(4) 12(1) 17 (4
()
(2)

(1)
18 (5) 12 (1) 94
(1)

n=50 9(4) 13(0) 18(5) 11(2) 15 13(0) 16(3) 12(1) 17 (4) 19(6) 12 9 (4)

Mixture Year

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

n=100 7(6) 13(0) 15(2) 9(4) 15 14 (1) 14(1) 8(5) 19(6) 15(2) 6) 8(5)

16(3) 19(6) 6(7) 14(1 3

19
15(2) 16
20

n=3000(13) 7(6) 20(7) 4(9) 22(9) 23(10) 19(6) 4(9) 17 (4) 16 (3) 7) 3(10)

( (6)
n=200 1(12) 12(1) 15(2) 5(8) 17 (4 (3) 2(11)

( (7)

( 9)

n=4000(13) 4(9) 19(6) 6(7) 21(8) 26(13) 20(7) 5(8) 13(0) 19(6) 22(9) 4(9)

Table 11 clearly shows that the i.i.d. model with rolling window outper-
forms the other models with respect to the overall exceedance probabi-
lity and OADE. For the 1% probability-unbiased VaR, the Normal model

6. Values for the overall exceedance probability and OAD for standard models in the lower half of Tables 11
and 12 are taken from McNeil et al. (2005).
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with window of length 25, the Student-t model with window of length
15 and the mixture with window of length 100 show the best overall
probabilistic properties. At 5% significance, Table 12 shows that the
i.i.d. Student-t model with rolling window of size 15 and the Normal
model with rolling window of size 50 outperform the other models with
respect to OAD and to the overall exceedance probability, respectively.
The mixture with a window of length 100 is the best within models with
mixture distribution and outperforms in VaR estimation many of the
methods proposed by McNeil et al. (2005).

Table lI: Historical 1% VaR exceedance probabilities of the various models and
historical Observed Absolute Deviation (OAD) per year

Model Exc. Prob. (%) OAD
Nii.d. n =15 0.16 2.50
Nii.d. n =25 0.87 1.33
Ni.i.d.n =50 1.43 1.42
STii.d.n =15 0.83 1.25
ST ii.d. n = 25 1.32 1.33
ST i.i.d. n = 50 1.65 1.50
NM i.i.d. n = 100 1.02 1.33
NM i.i.d. n = 200 1.29 2.00
NM i.i.d. n = 300 1.38 2.42
NM i.i.d. n = 400 1.43 2.33
VC 3.03 5.55
HS 2.02 3.00
VC-t 2.35 3.87
HS-GARCH 2.26 2.87
VC-MGARCH 2.31 2.87
HS-EWMA 2.07 2.62
VC-EWMA 2.02 2.62
HS-GARCH-t 1.68 1.62
VC-MGARCH-t 1.44 3.12
HS-CONDEVT 1.35 1.25
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Table I2: Historical 5% VaR exceedance probabilities of the various models
and historical Observed Absolute Deviation (OAD) per year

Model Exc. Prob. (%) OAD
Niid.n=15 3.43 4.16
Niid.n =25 4.38 2.41
Ni.i.d.n =50 4.97 2.42
STi.i.d.n =15 4.87 1.92
STiid.n =25 5.5 2.83
ST i.i.d. n = 50 5.32 2.50
NM i.i.d. n = 100 5.15 2.92
NM i.i.d. n = 200 4.71 4.17
NM i.i.d. n = 300 5.48 6.50
NM i.i.d. n = 400 5.82 6.25
VC 7.36 7.88
HS 7.65 8.12
VC-t 8.46 10.25
HS-GARCH 6.11 3.38
VC-MGARCH 6.64 4.50
HS-EWMA 6.2 3.62
VC-EWMA 5.92 3.38
HS-GARCH-t 6.34 3.75
VC-MGARCH-t 6.93 5.50
HS-CONDEVT 5.77 2.75

In general, the i.i.d. approach with short windows incorporates too little
information to produce good VaR estimates, whereas with large windows
VaR estimates are too static and they do not adapt to new information fast
enough. However, the i.i.d. approach to compute the 1% and 5% probabili-
ty-unbiased VaR outperforms the alternative models considered by McNeil
et al., which are more complex and use the plug-in VaR estimator. Figures
7 and 8 show a plot of the probability-unbiased VaR estimates of the i.i.d.
Student-t model with a rolling window size of 20 and 200 data points, res-
pectively. The rolling window with 20 data points clearly reacts extremely
fast to new data, with occasional large jumps in the VaR estimate.
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Figure 7: Portfolio log-returns from 1992 to 2003 and i.i.d. VaR estimates for
different a based on a Student-t rolling window model with a window length of

20 observations
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Figure 8: Portfolio log-returns from 1992 to 2003 and i.i.d. VaR estimates for
different « based on a Student-t rolling window model with window length of 200
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1.9. Conclusions

Francioni and Herzog (2012) (FH) proposed a standard resampling boot-
strap algorithm to estimate a probability unbiased VaR in the case of
Normal returns. The main idea is to replace the level a by a suitable
chosen level ap, which minimizes the averaged distance of the boot-
strapped estimators to a. In other words, their strategy consisted on
modifying the desired significance level a to obtain ay, in such a way
that we obtain an unbiased estimate of VaR at the original significance
level. Their analysis suggested that VaR estimates based on short sam-
ples may have a good performance for Normal distributions, often beat-
ing standard VaR estimates based on long samples.

We explore the properties of the probability-unbiased VaR proposed by
FH as an interesting alternative to plug-in VaR when working with short
samples and a small significance level a. It is then when the probability-
unbiased VaR differs more from plug-in VaR. We extend work by FH
to Student-t distributions and mixtures of Normal distributions. Our
results suggest that for a variety of distributions the plug-in VaR esti-
mator underestimates risk for a given range of probabilities (o) when
estimated from short samples. The smaller the sample size, the greater
the underestimation of risk by the plug-in VaR estimator. The range of
probabilities for which plug-in VaR underestimates risk depends on the
sample size and on the assumed probability distribution for returns. In
all these cases the probability-unbiased VaR performs better.

In the Gaussian case we can use the parametric approach to estimate
VaR in closed form. For other cases we use an appropriate bootstrapping
algorithm suggested by FH. We show that the performance of the prob-
ability-unbiased estimators for small sample sizes is surprisingly good
also for Student-t distributions as well as for mixtures of Normals. The
reason is that the shorter the period, the more uniform will be the sam-
ple. Besides, the conditional volatility will not change much over a short
sample, making the sample almost i.i.d.. The difference between a,,, and
a is larger for a Normal sample than for a Student-t distribution. For a
Mixture of Normals, the difference depends on the mixing parameters.

We also estimate probability-unbiased confidence intervals for the VaR
estimator. For the three distributions (Normal, Student-t and mixture of
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Normals) the probability-unbiased confidence interval is shifted to the left,
relative to the standard confidence interval calculated using the plug-in
VaR estimator. Once again, the leftward shift of the probability-unbiased
confidence interval is due to the fact that most simulated VaR values fall
to the left of the VaR estimate. Hence, a symmetric confidence interval
would not be appropriate. The findings in this chapter suggest that the
unbiased VaR estimator is a valuable tool for the practice of risk man-
agement.
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CHAPTER 2. VOLATILITY SPECIFICATIONS VERSUS
PROBABILITY DISTRIBUTIONS IN VAR €ESTIMATION

2.1. Introduction

A traditional discussion in risk measurement analysis has been whether
volatility models that incorporate a leverage effect, with negative inno-
vations having a larger impact on volatility than positive innovations
of the same size, lead to better Value at Risk (VaR) forecasts. A second
modeling issue refers to whether asymmetric probability distributions
for return innovations lead to an improved VaR model’.

The goal of this chapter is to examine the relative importance of the
two issues, the volatility specification and the assumption on the pro-
bability distribution of return innovations, for the efficiency of VaR
forecasts. The question is crucial for risk managers, since there are so
many potential choices for volatility model and probability distribu-
tions that it would be very convenient to establish some priorities in
modeling returns for risk estimation. To that end, we have performed an
extensive analysis of VaR forecasts in assets of different nature, using
symmetric and asymmetric probability distributions for the innovations
on volatility models with and without leverage. Additionally, we want to
make some progress in characterizing the more appropriate probability
distributions and volatility specifications to be used for innovations in
financial returns.

We consider three general volatility specifications with leverage, GJR-
GARCH, APARCH and FGARCH as well as the standard symmetric
GARCH model as benchmark. The FGARCH model includes as special
cases many other volatility specifications, like the symmetric GARCH,
GJR-GARCH and APARCH. It is, in fact, a nested family of GARCH- type

7. Along the chapter we refer to a VaR forecasting model as a combination of a probability distribution
and a volatility specification for return innovations.
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models, thereby allowing for testing how simpler models fit the data. Be-
sides, the FGARCH and APARCH models take the power on the conditio-
nal standard deviation of the innovations as a free parameter. That way,
they provide more flexibility to the dynamics of volatility, allowing for
shifts and rotations in the news impact curve. The two types of asymme-
try in volatility produced by shifts and rotations are distinct, and they
should not be treated as substitutes for each other (Hentschel, 1995).

As probability distributions for the innovations we compare the per-
formance of the skewed Student-t distribution and skewed Generali-
zed Error distribution as introduced in Fernandez and Steel (1998), the
unbounded Johnson S, distribution, skewed Generalized-t distribution
(Theodossiou, 1998) and Generalized Hyperbolic skew Student-t distri-
bution (Aas and Haff, 2006), with the Normal and symmetric Student-t
distributions as benchmark. An interesting feature of our work is the
consideration of a variety of assets of different nature: stock market in-
dexes, individual stocks, interest rates, commodity prices and exchange
rates.

A novel approach of our analysis is to use standard statistical tests
to examine the extent to which the estimated probability distributions
fit the distribution of empirical return innovations. Additionally, each
estimated combination of volatility specification and probability dis-
tribution for return innovations determines the distribution of returns
themselves. We use simulation methods to analyze whether our esti-
mated models fit the main characteristics of return distributions. These
should be expected to be two natural conditions for the good VaR per-
formance of a model. But, in spite of the fact that significant effort is
generally placed in selecting an appropriate probability distribution and
volatility model, the ability of estimates to explain sample moments is
seldom examined.

We calculate VaR forecasts following the parametric approach. An AR(1)
was estimated for daily returns in all cases. The performance of VaR
forecasts is examined through standard tests: the unconditional cove-
rage test of Kupiec (1995), the independence and conditional coverage
tests of Christoffersen (1998), the Dynamic Quantile test of Engle and
Manganelli (2004), as well as the evaluation of the Asymmetric Linear
Tick loss function (AlTick) proposed by Giacomini and Komunjer (2005).
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The combination of 19 assets, 7 probability distributions, 4 volatility
specifications and 4 backtests of VaR leads to an extensive set of results
that need to be summarized in a search for some consistent conclusions.
One of the contributions of this chapter is to follow a diverse strategy
to examine test results in search of robust patterns that might suggest
some preferred VaR model specifications. We proceed along several li-
nes: i) comparing the number of realized and theoretical violations of
VaR for the alternative models across the set of assets, ii) comparing
the p-values of VaR tests over the alternative models, iii) applying a
Dominance criterion we introduce in this chapter to the alternative VaR
models considered, iv) following the Model Confidence Set approach to
select the most preferred models. Such multiple strategy for summari-
zing the information allows us to draw some clear-cut conclusions on
the benefits of the alternative models.

Our results suggest that the important assumption for VaR performan-
ce is that of the probability distribution of the innovations, with the
choice of volatility model playing a secondary role. Indeed, validation
tests for VaR forecasts yield very similar results for a given probability
distribution as we change the volatility model. On the contrary, test
results drastically change for a given volatility model when we change
the assumption on the probability distribution of the innovations. In
fact, the main difference arises when we move from symmetric to asym-
metric probability distributions for the innovations, a result consistent
with work by Gerlach et al. (2011) and Dendramis et al. (2014), among
others. The unbounded Johnson distribution, the skew Generalized-t
distribution and the skewed Generalized Error distributions seem to do-
minate other asymmetric distributions, like the skewed Student-t and
the Generalized Hyperbolic skewed Student-t. Symmetric distributions
are clearly inappropriate. Furthermore, FGARCH and APARCH volatility
specifications dominate other alternatives. Indeed, our results suggest
that the standard deviation, rather than the variance, should often be
used to model volatility dynamics.

Relative to the ability to reproduce sample moments, different volati-
lity models with the same probability distribution for the innovations
fit sample moments similarly. On the other hand, while it is obviously
true that asymmetric distributions are needed to explain the skewness
in returns, symmetric and asymmetric probability distributions, imposed
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on the same volatility model lead to minor differences in kurtosis. The
ability of estimated models to fit the empirical distributions of returns
and returns innovations seems in fact, a necessary condition for a good
VaR performance.

2.2. A review of literature

Among parametric methods for VaR estimation, some authors have
analyzed the improvement on VaR estimation provided by volatility
models with leverage. Giot and Laurent (2003a) estimated daily VaR for
stock indexes using different volatility models. They stated that more
complex models like APARCH performed better than RiskMetrics or
GARCH specifications (for a comparison of volatility models in VaR
estimation see also El Babsiri and Zakoian, 2001). Angelidis et al. (2004)
show that volatility models with leverage fare better than symmetric
specifications, as they capture more efficiently the characteristics of the
underlying series and provide better VaR forecasts since they perform
better in the low probability regions that VaR tries to measure (see also
Ane, 2006). McMillan and Kambouroudis (2009) provide evidence on
the performance of alternative VaR models for a large number of indivi-
dual stocks and exchange rates. They conclude that the APARCH model
should be preferred for more extreme VaR forecasts, while the RiskMe-
trics model seems to be adequate at more moderate significance levels.
In their work, RiskMetrics seems adequate in providing volatility fore-
casts for most Asian markets; however, the APARCH model is superior
in obtaining forecasts for the G7 markets, as well as for other European
markets and for the larger Asia markets.

Given the widespread evidence on the skewness of the distribution of
asset returns, analyzing whether the assumption of an asymmetric dis-
tribution of return innovations leads to more efficient VaR forecasts is a
second methodological issue of interest. Based on the influence of leve-
rage effects on the accuracy of VaR forecasts, Brooks and Persand (2003)
concluded that models which do not allow for asymmetries either in the
unconditional distribution of returns or in the volatility specification
underestimate the true VaR. Giot and Laurent (2003a) used daily data for
stock market indexes and individual stocks, showing that models that
rely on a symmetric density for return innovations underperform with
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respect to skewed density models that require modeling both the left and
right tails of the distribution of returns. Lee and Su (2015) estimate VaR
for eight stock market indexes from Europe and Asia by a parametric
GARCH approach as well as by the semi-parametric approach of Hull
and White. The only asymmetric distribution they consider, the skewed
Generalized-t, is shown to have a better VaR forecasting performance
than the Student-t, with the Normal distribution being the last in the
ranking, according to the unconditional coverage test of Kupiec and two
different loss functions.

Corlu et al. (2016) investigate the ability of five alternative probability
distributions to represent the behavior of daily equity index returns over
the period 1979-2014: the skewed Student-t distribution, the generali-
zed lambda distribution, the Johnson system of distributions, the normal
inverse Gaussian distribution, and the g-and-h distribution. The expla-
natory power of the alternative distributions is tested using in-sample
Value at Risk (VaR) failure rates. Their focus is on the unconditional dis-
tribution of equity returns, not on conditional distributions. They find
that the generalized lambda distribution is a prominent alternative for
modeling the behavior of daily equity index returns.

More recently, some papers have jointly examined the performance of
both, the variance specification and the probability distribution of re-
turn innovations in VaR estimation. Gerlach et al. (2011) examine the
performance of a wide class of volatility models: RiskMetrics, asymme-
tric GARCH, IGARCH, GJR-GARCH and EGARCH, under four alternative
probability distributions: Gaussian, Student-t, Generalized Error Distri-
bution and skewed Student-t in VaR forecasting at 1% and 5% signi-
ficance in different time periods (pre-crisis, crisis-GFC and post-crisis)
incorporating parameter uncertainty through a Bayesian approach. Re-
sults are varied and hard to summarize, but their evidence suggests a
preference for asymmetric probability distributions for the innovations
of the return process. Giot and Laurent (2003b) analyze daily returns
on commodities fitting ARCH and APARCH models under a skewed
Student-t probability distribution for the innovations, and using Ris-
kmetrics as a benchmark. While the skewed Student-t APARCH model
performs best in all cases, it is unclear whether the forecasting gain is
enough to dominate over the computationally simpler skewed Student-t
ARCH model. Bubak (2008), Tu et al. (2008), Kang and Yoon (2009) and
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Diamandis et al. (2011), analyze Eastern and Central European stock
markets, Asian stock markets, Asian emerging markets and developed
and emerging markets, respectively. Comparing a wide range of univa-
riate conditional variance models, they show that models that incorpo-
rate an asymmetric distribution for return innovations tend to perform
better than models with a symmetric distribution, in terms of both in-
sample and out-of-sample (one-day-ahead) VaR forecasts. Dendramis
et al. (2014) show that the VaR performance of alternative parametric
models like EGARCH or the Markov regime-switching model is enhan-
ced when combined with asymmetric probability distributions for re-
turn innovations. Tang and Shieh (2006) and Mabrouk and Saadi (2012)
include Fractionally Integrated time varying GARCH models designed
to capture not only volatility clustering, but also long memory in asset
return volatility. Both papers consider three probability distributions,
Normal, Student-t and skew Student-t. Tang and Shieh (2006) consider
FIGARCH and HYGARCH (Hyperbolic GARCH) models, showing that for
the three stock index futures considered, HY GARCH models with skewed
Student-t distribution perform better based on the Kupiec LR tests. Ma-
brouk and Saadi (2012) conclude that the skewed Student-t FIAPARCH
model outperforms the alternative GARCH and HYGARCH models be-
cause it can simultaneously account for fat tails, asymmetry, volatility
clustering and long memory. However, given that the VaR forecasts re-
quired by the Basel accords are short run, the inclusion of long-memory
is expected not to make any fundamental difference [see for example So
and Yu (2006)]. So, the need to consider asymmetric probability distri-
butions for return innovations seems to be well established at this point.
Recently, Leccadito et al. (2014) have compared the performance of a
variety of volatility specifications and asymmetric distributions using
multilevel VaR tests that apply independence and conditional coverage
tests at different confidence levels.

As in the latter group of papers, we also examined the performance of
both, the variance specification and the probability distribution of re-
turn innovations in VaR estimation. We consider a complex and flexible
volatility model proposed by Hentschel (1995), FGARCH, which is an
omnibus model that subsumes some of the most popular GARCH mo-
dels. To the best of our knowledge, there are no papers examining the
performance of this model for VaR forecasting. Besides, we introduce
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distributions rarely used in the literature on VaR performance, such as
the skewed Generalized Error Distribution [Fernandez and Steel (1998)],
Johnson SU distribution [Johnson (1949)], skewed Generalized-t [Theo-
dossiou (1998)] and Generalized Hyperbolic skew Student-t distribution
(GHST) [Aas and Haff (2006)]. In the VaR literature, Johnson distribuR
tions are suggested in Zangari (1996), Mina and Ulmer (1999), in Ris-
kMetrics Technical Document (1996) and Choi (2001), which examines
empirically a GARCH model with Johnson innovations. Simonato (2011)
documents the performance of the Johnson system relative to closely
competing approaches, such as the Gram-Charlier and Cornish-Fisher
approximations. He considers the case of Expected Shortfall compu-
tation without performing a backtesting analysis, just comparing the
moments of the distributions and root-mean-squared errors. The GHST
distribution has hardly been employed in financial applications because
its estimation is computationally demanding. Nakajima and Omi (2012)
use GHST distribution to perform a Bayesian analysis of a stochastic vo-
latility model. Among multivariate applications, Hu (2005) Multivariate
Generalized Hyperbolic Distribution using the EM algorithm. Paolella
and Polak (2015) also use the Generalized Hyperbolic distribution in a
context of multivariate time series.

Relative to this ever increasing literature, we contribute in different ways:
i) considering a set of probability distributions that have recently been
suggested to be appropriate for capturing the skewness and kurtosis of
financial data, but whose performance for VaR estimation has not been
compared yet on a common dataset, ii) considering the APARCH and
FGARCH volatility models with leverage that have also been recognized
as being adequate for financial returns, iii) applying existing backtes-
ting procedures for the different VaR models to a wide array of assets of
different nature, iv) comparing the relevance of the assumed probability
distribution for return innovations and the volatility specification for
VaR performance, v) introducing a dominance criterion to establish a
ranking of models on the basis of their behavior under standard VaR
validation tests, vi) using the dominance criterion and the Model Con-
fidence Set approach to search for robust conclusions on the preference
of some probability distributions and volatility specifications.
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2.3. Volatility models and probability distributions

Let x, fort = 1, ..., T, be a time series of asset returns. It is convenient to
break down the complete characterization of x, into three components:
i) the conditional mean, p, ii) the conditional variance, which contains
a scale parameter that measures the dispersion of the distribution, o?
and iii) the shape parameters, which determine the form of a conditional
distribution (e.g., skewness, kurtosis) within a general family of distribu-
tions. Thus, we may write

xe = u(0) + & we(8) = Elx|Fr_q] = u(6,F_y) & = 0,(0)z,
Utz(e) = E[(x¢ — ue)?|Fee] = 0%(6, Fe_1) z~f(2:10)

The standardized innovation, z, = (xt - ut(e)) /0:(0) has zero mean and a
unit variance. It follows a conditional distribution f with shape parameters
that capture the possible asymmetry and fat-tailedness of returns, except
in the case of the Normal distribution. Vector € contains all the parameters
associated with the conditional mean and variance and the conditional dis-
tribution.

An AR(1) model for the conditional mean return is sufficient to produce
serially uncorrelated innovations for all assets. We consider three gene-
ral volatility models with leverage, GJR-GARCH, APARCH and FGARCH
with a standard symmetric GARCH model as benchmark. As proba-
bility distributions for the innovations we compare the performance
of skewed Student-t, skewed Generalized Error, unbounded Johnson S,
skewed Generalized-t and Generalized Hyperbolic skew Student-t distribu-
tions, with the Normal and symmetric Student-t distributions as benchmark.

In all models we jointly estimate by maximum likelihood the parame-
ters in the equation for the mean return, the equation for its conditional
variance and the probability distribution for the return innovations. The
exception is the skewed Generalized-t distribution, for which we use a
two-step estimation method because of the numerical difficulty of esti-
mating all parameters jointly®.

8. Inthat case, we first estimated the AR(1)-GARCH conditional mean-volatility model assuming a Generalized
Error distribution (GED) for the innovations, as suggested by Bali and Theodossiou (2007). The parameters of
the skewed Generalized-t distribution (SGT) were estimated in a second stage using the standardized returns
(M = 2) obtained in the first step.

ot ot
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2.3.1. Volatility models

The conditional variance of GARCH(p,q) model (Bollerslev, 1986) is used
as a benchmark, i.e.

q P
2 — 2 2
of =w+ Z a;g_; + Z Bjoi_;

i=1 j=1

where w > 0,a;, 8, 20,37 a; + X0_ B < 1.

The standard GARCH model captures the existence of volatility clus-
tering but is unable to express the leverage effect, since it assumes
that positive and negative error terms have the same effect on volatil-
ity. To incorporate asymmetric effects on volatility from positive and
negative surprises, Glosten, Jagannathan and Runkle (1993) proposed
a GJR-GARCH(p,q) model, adding the negative impact of leverage in
the conditional variance equation. This model incorporates positive and
negative shocks on the conditional variance asymmetrically via the use
of the indicator function I(e,_; < 0), so that the variance equation be-
comes,

q p
of =w+ Z [ael; +vil(g—i < 0)ef ]+ Z Biot;
i=1 j=1

The volatility effect of a unit negative shock is a, + y; while the effect of
a unit positive shock is a.. A positive value of y, indicates that a negati-
ve innovation generates greater volatility than a positive innovation of
equal size, and on the contrary for a negative value of vy,

The APARCH model (Asymmetric Power ARCH model) was proposed by
Ding, Granger and Engle (1993). This model can well express volatility
clustering, fat tails, excess kurtosis, the leverage effect and the Taylor
effect. The latter effect is named after Taylor (1986) who observed that
the sample autocorrelation of absolute returns was usually larger than
that of squared returns. The APARCH variance equation is,

q P
5 _ 5
0y =w+ Z @i (lee—il = vige—)® + Z Bjoe_j

i=1 =1
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where o, a, v, B, and & are additional parameters to be estimated. The
parameter vy, reflects the leverage effect (-1 < y,< 1). A positive (resp.
negative) value of y, means that past negative (resp. positive) shocks
have a deeper impact on current conditional volatility than past positi-
ve (resp. negative) shocks. The parameter 6 plays the role of a Box-Cox
transformation of o, (6 > 0).

The APARCH equation is supposed to satisfy the following conditions,
i) ® > O (since the variance is positive), o.= 0, i = 1, 2, ..., g, ,Bj >0,
j=12,..,p.Wheno,=0,i=1,2,..,q, ,Bj =0,j=1,2, .., p, then ¢’ = o,
i) 0 < ¥, a; + X7_; B; < 1. The APARCH model is a general model be-
cause it has great flexibility, having as special cases, among others,
those mentioned above.

The FGARCH model (Family GARCH) of Hentschel (1995) is an omnibus
model which subsumes some of the most popular GARCH models. It is
similar to the APARCH model, but more general, since it allows the de-
composition of the residuals in the conditional variance equation to be
driven by different powers for z, and o,. It also allows for both shifts and
rotations in the news impact curve, where the shift is the main source
of asymmetry for small shocks while rotation drives the asymmetry for
large shocks.

q p
A _ A A
o =w+ 2 aiat—1f8(zt—i) + Eﬁjo}—j
i=1 j=1

where fs(Zt—i) = (Ize=i = M2il = Mi(Ze—; — 7721'))5-

Positivity of f°(z,—;) is guaranteed when |n;| < 1, which ensures that
neither arm of the rotated absolute value function crosses the abscissa.
The parameter #,, however, is unrestricted in size and sign. The mag-
nitude and direction of a shift in the news impact curve are controlled
by the parameter 7, while the magnitude and direction of a rotation in
the news impact curve are controlled by the parameter 7,. Other GARCH
models only permit either a shift or a rotation, but not both. Allowing
for shifts in the news impact curve, the FGARCH model is more flexible
than previous models, being able to capture asymmetries in volatility
even in the presence of small shocks.

el
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2.3.2. Probability distributions

To account for the excess skewness and kurtosis typical of financial
data, the parametric volatility models presented in the previous section
can be combined with skewed and leptokurtic distributions for return
innovations. The skewed Student-t by Fernandez and Steel and Lambert
and Laurent (2001)° is

2
f@IE,v) = —7 s{gl{(sz + M) V]I (_eo,0)(z + m/5) + gl(sz + M) /& |V]Ijo,00)(z + m/5)} (5)

$

where g(- |v) is the symmetric (unit variance) Student-t density and ¢ is
the skewness parameter'®; m and s? are, respectively the mean and the
variance of the non-standardized skewed Student-t and are defined as,

E(el§) = My(§ —¢H =m
V(eld) = My — MP)(E? +§72) + 2Mf — M, = 52

where M, = 2 fnoo s"g(s)ds is the absolute moments generating function.
Note that when = 1 and v = + o we get the skewness and the kurtosis
of the Gaussian density. When = 1 and v > 2 we have the skewness and
the kurtosis of the (standardized) Student-t distribution.

An alternative distribution for return innovations which can capture
skewness and kurtosis can be based on the Generalized Error Distribu-
tion (GED) by Nelson (1991). According to Lambert and Laurent the in-
novation process z, is said to follow a (standardized) skewed Generalized
error distribution, SGED(0,1, ¢, ), if

2
fzlé, ) = 7589l (sz + M)l (—oo,0y (2 + m/5) + gl(sz + m) /€ |K]lj0,00)(z + m/5)}
+_
13

9. Lambert and Laurent (2001) and Giot and Laurent (2003a) have shown that for various financial daily
returns, it is realistic to assume that standardized innovations Z, follows a skewed Student-t distribution.
10. The skewness parameter & > 0 is defined such that the ratio of probability masses above and below
the mean is

Prob(z =2 0|§)
Prob(z < 0|&) ~

2
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where g(- |x) is the symmetric (unit variance) Generalized Error distri-
bution, ¢ is the skewness parameter, x representing the shape parame-
ter and /() is the gamma function. Mean (m) and standard deviation
(s) are calculated in the same way as in the case of skewed Student-t
distribution. As x increases the density gets flatter and flatter while in
the limit, as k — oo, the distribution tends toward the uniform distri-
bution. Special cases are the Normal when x = 2 and the Laplace dis-
tribution when x = 1. For ¥ > 2 the distribution is platykurtic and for
K < 2 it is leptokurtic.

Another alternative is the Johnson S, distribution. It was one of the
distributions derived by Johnson (1949) based on translating the Nor-
mal distribution by certain functions. Letting Z ~ N (0,1), the standard
Normal distribution, the random variable Y has the Johnson system of
frequency curves if it is a transformation of Z by Z =y + dg (Y - &)/A).
The form of the resulting distribution depends on the choice of function
g. When g(u) = sinh-' (u), the distribution is unbounded, called the Jo-
hnson S, distribution. The parameters of the distribution are , 4 > 0, 7,
0> 0.

We use a parametrization" of the original Johnson S, distribution, so
that parameters ¢ and 4 are the mean and the standard deviation of the
distribution. The parameter y determines the skewness of the distribu-
tion with ¥ > 0 indicating positive skewness and Y <0 negative skewness.
The parameter 6 determines the kurtosis of the distribution. ¢ should be
positive and most likely in the region above 1.

The pdf of the Johnson’s S, denoted here as JSU(§,4,y,6), is defined by

1

1) 1 1
fry) = a\/ﬁﬁew [ >

11. This parametrization is used by R rugarch package, which we use for estimating the parameters of our
models.
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where
z=—y + 8sinh™1(r) = —y + Slog[r + (r? + 1)¥/?]

1
y — (§ + cAw2sinhQ)
cA

1 -1/2
c= {E (w — 1)[wcosh2Q + 1]}

where @ = exp (0%) and Q = -y/6. Note that Z ~ N(0,1). Here E(Y) = ¢
and Var(Y) = A2.

A very flexible distribution is the skewed Generalized-t distribution pro-
posed by Theodossiou (1998). They developed a skewed version of the
Generalized-t distribution introduced by McDonald and Newey (1988).

The skewed Generalized-t distribution has the probability density function

14

1
1 X =+ m? Pt
2v947B (5,4) (q(va)msign(x —utmy+p 1)

fxlwo,A,p,q) =

where

1
v=gq P|[(BA2+1)
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where B(-) is the beta function, and y, g, 4, p and g are the location,
scale, skewness, peakedness and tail-thickness parameters, respectively.
Note that the parameters have the following restrictions >0, -1 < A <
1, p >0 and g > 0. The skewness parameter A controls the rate of descent
of the density around x = 0. The parameters p and g control the height
and tails of the density, respectively. The parameter g has the degrees of
freedom interpretation in case A = 0 and p = 2.

More complex and novel are the distributions belonging to the genera-
lized hyperbolic family. An special case of this family is the Generalized
Hyperbolic skew Student-t distribution proposed by Aas and Haff (2006).
This distribution has the important property that one tail has polynomial
and the other exponential behavior. Further, it is the only subclass of the
Generalize Hyperbolic family of distribution having this property. This
is an alternative for modeling the empirical distribution of financial re-
turns. It is often skewed, having one heavy and one semiheavy or more
Gaussian-like tail. The skew extensions to the Student-t distribution, like
that of Fernandez and Steel, have two tails behaving as polynomials. This
means that they fit heavy-tailed data well, but they do not handle subs-
tantial skewness, since that requires one heavy tail and one nonheavy tail.

The probability density function of the Generalized Hyperbolic skew
Student-t is given by

zl%vawmvTﬂKm(\/ﬁz(SZ + (x — )2 )exp (B(x — 1))
fx(x) = 2 v+1 p#0

VR G ©

and

r v+1 _\21-(v+D)/2
£ = (5 )[1+(x62u)]

o )

where K, (x)~ \/% exp (—x) for x -» +oo is the modified Bessel function

(Abramowitz and Stegun, 1972), u, J, f and v determine the location,
scale, skew and shape parameters, respectively.

B=0

N <
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When f = 0 the density f(x) can be recognized as that of noncentral Student-t
distribution with v degrees of freedom, expectation u and variance &*/(v - 2).

2.4. The data

We work with daily percentage returns on five groups of assets of different
nature over the sample period 1/4/2000-12/31/2015 (4173 observations).
Daily returns are computed as 100 times the first difference of log prices,
i.e. 100[In(P,,)- In(P)]%. The financial assets considered are: stock market
indexes: IBEX 35 (€), NASDAQ 100 ($), FTSE 100 (£) and NIKKEI 225 (¥);
individual stocks: IBM ($), SAN (€), AXA (€) and BP (f); interest rates: IRS
5Y (€), interest rate of GERMAN BOND 10Y (€) and interest rate of US BOND
10Y($); commodity prices CRUDE OIL BRENT ($ per barrel), NATURAL GAS
($ per Million British Thermal Units), GOLD ($ per Troy Ounce) and SILVER
(Cents $ per Troy Ounce) and exchange rates EUR/USD (€), GBP/USD (£),
JPY/USD (¥) and AUD/USD (Australian $). The data were extracted from
Datastream.

Table 13 reports descriptive statistics for daily returns. All the assets have
mean and median returns close to zero. Returns on interest rates are ob-
tained as log changes in the price of implicit zero coupon bonds having
the value of an interest rate as a yield. In terms of standard deviation,
the sample range is higher for AUD/USD (18.7), IRS (18.0) and US BOND
(17.1) and lower for JPY/USD (13.2), EUR/USD (13.4), SILVER (13.8) and
the interest rate on the GERMAN BOND (13.9). The unconditional standard
deviation is relatively similar for assets in the same class, except for com-
modities, where GAS (4.19) and OIL BRENT (2.28) are more volatile than
GOLD (1.13) and SILVER (1.93). NASDAQ is more volatile than other stock
market indexes and AXA is the most volatile stock. The $US exchange rate
for the Australian dollar has higher standard deviation than the one for
the euro, British pound or Yen. AUD/USD, SILVER, GOLD and NIKKEI have
significant negative skewness, while GAS, AXA, JPY/USD and NASDAQ
have high positive skewness. For all the assets considered the kurtosis is
high, implying that the return distributions have much thicker tails than
the Normal distribution. Kurtosis is especially large for AUD/USD, GAS,
IBM and AXA while EUR/USD, while the interest rate of the GERMAN
BOND and the JPY/USD exchange rate have lower kurtosis. Together with
a large sample size, these values for skewness and kurtosis lead to a very
large Jarque-Bera statistic, rejecting the assumption of Normality in all
cases.
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Table 13: Descriptive statistics for daily percentage returns. Mean and median
returns are in basis points. SD denotes the standard deviation, and J-B is the
Jarque-Bera statistic to test for Normality. Sample: 01/04/2000-12/31/20I15

Mean Median

(bps.) (bps.) Max Min S.D. Skewness Kurtosis J-B

IBEX -0.47 2.89 13.48 -9.58 1.49 0.08 7.93 4234.84
NASDAQ 0.46 3.68 17.20 -11.11 1.85 0.19 9.62 7652.53
FTSE -0.25 0 938 -9.26 1.21 -0.16 9.36 7042.80
NIKKEI 0.01 0 13.23 -12.11 1.50 -0.41 9.72 7979.58
IBM 0.42 0 12.26 -16.89 1.66 -0.07 11.63  12947.74
SAN 1.01 0 20.87 -15.19 2.19 0.15 9.11 6515.50
AXA 0.55 0 19.78 -20.35 2.67 0.27 10.09 8790.79
BP -1.35 0 10.58 -14.04 1.71 -0.13 7.81 4041.28
IRS 0.55 0.48 1.92 -1.86 0.21 -0.28 8.53 5367.17
GER BOND 1.11 0.97 339 -2.33 041 -0.09 5.97 1536.83
US BOND 0.98 0.96 453 -5.57 0.59 -0.22 7.96 4307.77
BRENT 0.98 0 1797 -18.72 2.28 -0.19 8.26 4831.81

GAS 0.01 0 37.81 -28.90 4.19 0.56 12.81 16946.14
GOLD 3.10 0.01 6.86 -10.16 1.13 -0.41 8.81 5991.49
SILVER 2.26 0 13.66 -12.98 1.93 -0.57 8.62 5724.23
EUR/USD 0.16 0 4.62 -3.84 0.63 0.14 5.48 1091.11

GBP/USD -0.20 0 4.43  -3.88 0.57 -0.04 7.27 3170.80
JPY/USD -0.41 -0.99 4.61 -3.71 0.63 0.27 6.96 2779.74
AUD/USD 0.23 1.86 6.70 -8.83 0.83 -0.82 15.13  26058.43

Figure 9 displays daily percentage returns of each stock market indexes. It
is clear from the graph that large price changes tend to also be followed
by large changes, and small changes tend to follow small changes. Such
volatility clustering is a property of asset prices that each index seems to
exhibit. This graphical evidence is an indication of the presence of ARCH
effect in our daily returns series that should be accounted for when esti-
mating Value at Risk. Figure 9 also displays QQ-plot of each index against
the Normal distribution. These QQ-plot show that all returns distributions
exhibit fat tails and also fat tails are not symmetric.
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Figure 9: Stock market indexes daily percentage returns and QQ-plot against the

Normal distribution
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2.5. Parameter estimates

To perform a VaR analysis we estimate four volatility models: GARCH,
GJR-GARCH, APARCH and FGARCH under each of the different
probability distributions assumed for the innovations: Normal, Student-t,
skewed Student-t, skewed Generalized Error, unbounded Johnson S, skewed
Generalized-t and Generalized Hyperbolic skew Student-t distributions. An
AR(1) model was specified for the conditional mean return in all cases. Most
computations were performed with the rugarch package (version 1.3-4)
of R software (version 3.1.1), designed for the estimation and forecast of
various univariate ARCH-type models. The exception is the estimation
of models under the skewed Generalized-t and Generalized Hyperbolic
skew Student-t distributions for which we used the sgt package (version
2.0) and the SkewHyperbolic package (version 0.3-2), respectively.

The Ljung-Box Q statistic for five lags computed on the standardized
residuals does not show evidence of autocorrelation at 1% significance
level except for GAS. But for one lag, GAS does not show autocorre-
lation at 1%, inasmuch as the p-values of the Q statistics are 0.0899,
0.2621, 0.2440, 0.0452, 0.2288, 0.0447 and 0.4053 for N-, ST-, SKST-,
SGED-, JSU-, SGT- and GHST-APARCH models, respectively. The same
statistic computed with nine lags on the squared standardized residuals
is not significant at 1% except for IBEX, SAN, IRS, GERMAN BOND,
OIL, GOLD and SILVER. If we consider one lag, we obtain a Q statistic
not significant at 1% significance level for IBEX and SAN but it remains
significant for the remaining assets. A significant statistic indicates a
possible problem with this model. In the lower panels of these tables we
present the log-likelihood values of the four volatility models (GARCH,
GJR-GARCH, APARCH and FGARCH). Their similarity suggests that the
implied volatility specifications are very similar. The autoregressive
effect in volatility is strong, with a §, -parameter generally above 0.90,
suggesting strong memory effects. The range of g, is [0.88, 0.97] where
the minimum is obtained for GAS and the maximum is obtained for
EUR/USD. The coefficient y, is positive and statistically significant
for most series, indicating the existence of a leverage effect for negati-
ve returns in the conditional variance specification. Estimates of y, are
close to 1 for IBEX, NASDAQ and FTSE (in the GJR-GARCH model we
also obtain an a, (parameter close to 0). Compared to estimates for other
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assets these values are very high, suggesting that only negative shocks
contribute to volatility. We also obtain a y, estimate close to 1 in the
APARCH model (equivalently «, close to 0 in GJR-GARCH) with other
indexes not considered in this chapter such as CAC 40, DAX 30 and S&P
500 for this same sample period. We obtain the same parameter estima-
tes for these models and indexes using MatLab, R, Eviews and Gretl. The
coefficient p, is negative and statistically significant for interest rates
with some models, GOLD, SILVER and JPY/USD, indicating that a positi-
ve shock generates greater volatility than a negative shock of equal size.

It is also important that estimates of ¢ in the skewed Student-t and
skewed Generalized Error are less than 1 for most assets, suggesting
the convenience of incorporating negative asymmetric features in the
probability distribution in order to model innovations appropriately. A
similar consideration applies to the skewness parameter y of the Johnson
S, A of the skewed Generalized-t and # of Generalized Hyperbolic skew
Student-t, which in these cases the skewness parameters have negative
sign. We obtain positive skewness with GAS and GOLD with some mo-
dels, EUR/USD and JPY/USD. According to kurtosis, the estimates of v
(Student-t and skewed Student-t) and ¢ (Johnson S ) are between 1.35
and 12.50, capturing the heavy tails of the distribution. The smallest
values are obtained with Johnson S,. The kurtosis parameters x and
p of skewed Generalized Error and skewed Generalized-t, respectively,
measure the peakness of the distribution. For most assets and with most
models, we obtain values lower than 2 indicating that the distribution is
leptokurtic. Note that skewed Generalized-t have two parameters related
to kurtosis, p and g. The parameters p and g control the peak and the
tails of density, respectively. And the parameter g only has the degrees
of freedom interpretation in case A = 0 and p = 2. We obtain high g
values accompanied with low p values for some assets, indicating in
these cases that the kurtosis is mainly due to higher peak, rather than
thicker tails of the distribution. Finally, o takes values between 0.95 and
2.33, being significantly different from 2 in most cases'?. Our estimates
of the APARCH model for the different asset classes (not shown in the

12.  This result is in line with those of Taylor (1986), Schwert (1990) and Ding et al. (1993) who indicate
that there is substantially more correlation among absolute returns than among squared returns, a reflection
of the 'long memory’ of high-frequency financial returns.
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tables) suggest that, contrary to standard practice, we should model
the conditional standard deviation for stock market indexes, individual
stocks and metals, the conditional variance (0 = 2) for interest rates, and
a value between conditional standard deviation and variance (0 = 1.5)
for energy commodities and exchange rates. In summary, these results
indicate the need for a model featuring a negative leverage effect in the
equation for conditional volatility (conditional asymmetry) combined
with an asymmetric distribution for the underlying error term (uncon-
ditional asymmetry) when representing stock market data. Furthermore,
that equation should be specified for the right power of the conditional
standard deviation.

Figure 10 displays, for each stock market index, histograms and QQ-
plots against theoretical quantiles for estimated standardized residuals
(2,) of the SKST-APARCH model. We can observe that standardized in-
novations show, indeed, fat tails and negative skewness.

Figure I0: Histograms and QQ-plots of standardized innovations from SKST-APARCH
model for stock market indexes against the skewed Student-t distribution

{n) IBEX 35 (b) NASDAQ 100 {¢) FTSE 100 (d) NIKKEI 225
.-"'# .-"'/ - g o
- -~ .___,-'"'
(e) IBEX 35 (f) NASDAGQ 100 (z) FTSE 100 (hiy NIKKEI 223

Figure 11 displays the news impact curves of different volatility models
for IBM. We can observe that GARCH and GJRGARCH models are based
on the variance equation, while APARCH and FGARCH models introdu-
ce the Box-Cox transformation in the conditional standard deviation,
and the free parameter (0 in APARCH and A in FGARCH) determines
the shape of the transformation. For IBM the value of this parameter is
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0 =1.01 and 4 = 1.10 for the GHST-APARCH and GHST-FGARCH model,
respectively. These parameters are significantly different from zero and
two, but not from one. Furthermore, FGARCH model permit not only ro-
tations, like APARCH model, but also shifts of the news impact curve. As
can be seen from Figure 11 d), the asymmetry caused by the shift 7, = 0.20
is most pronounced for small shocks. For extremely large shocks, the
asymmetric effect becomes a negligible part of the total response. On
the other hand, the rotated news impact curve of Figure 11 c), y = 0.61
maintains the hypothesis that a zero shock results in the smallest increase
of conditional variance. Additionally, the size of the asymmetric effect of
small shocks is very small in absolute terms. The estimates of y in
APARCH model imply that negative shocks result in higher volatili-
ty than equally large positive shocks, which is in accordance with the
“leverage effect”. In Figure 11 d) the shift #, = 0.20 and rotation #, = 0.42
are combined in one news impact curve. Both parameters are signifi-
cant. By appropriately shifting and rotating the news impact curve, it
is possible to have asymmetry for small shocks, a roughly symmetric
response for moderate shocks, and asymmetry for very large shocks.

Figure ll: News impact curves of different volatility model for IBM

{a] GHST-GARCH (b) GHST-GJRGARCH

(o) GHST-APARCH (d) GHST-FGARCH
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2.6. Fitting the data

VaR models are usually evaluated according to the performance of their VaR
estimates using appropriate testing procedures. However, the ability of a
VaR model to reproduce the main characteristics of return data is hardly
ever examined. A possible justification for such inattention is the argument
that good VaR estimates have to do just with the quality of the fit to the
tails of the distribution of returns. A good overall fit might not be all that
interesting because it might be obtained at the expense of not fitting so
well the distribution tails. However, the fit to the tail of return distribution
is usually not examined either. The fact is that it is unclear whether a
good overall fit of the return distribution helps to produce good VaR
estimates or whether it should be enough to care about the fit to the tail
of the distribution, and we want to throw some light into that question.
In particular, if fitting the tail distribution is what matters, that might
explain why the type of models considered in extreme value theory tend
to beat other alternatives in VaR estimation.

We examine in this section the extent to which each model fits the
return data, and we will later check whether the models with a better
overall fit lead to better VaR estimates. We start by checking the extent
to which each model fits the likelihood of return data. After that, we
examine the ability of each model to fit the main sample moments of
returns. To evaluate the fit to the distribution of returns Monte Carlo
simulation is needed, as explained below.

2.6.1. Likelihood ratio tests

Models with FGARCH volatility, combined with JSU and SGED distri-
butions for stock market indexes, with SKST and SGED distributions for
individual stocks, with JSU and GHST distributions for interest rates, with
SGED for commodities and with SGED and JSU for exchange rates, often
achieve the highest log-likelihood. Likelihood ratio tests in Table 14 show a
superiority of the FGARCH specification over the APARCH, GJR-GARCH
and the symmetric GARCH specifications for stock market indexes. In all
comparisons in the table, the more restricted model appears to the left.
At 5% significance, the test clearly favors the APARCH model against the
GJRGARCH model and the FGARCH model against the APARCH. Indeed,
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for stock market indexes, individual stocks and commodities the FGARCH
model is preferred to the APARCH model whereas for interest rates and
exchange rates the APARCH model is preferred. Overall, FGARCH and
APARCH are the best models according to this criterion.

Table 14: Likelihood ratio tests of volatility specifications for stock market

indexes

Test statistic IBEX NASDAQ FTSE NIKKEI
N-GARCH vs N-APARCH 205.186 138.348 195.112 78.296
N-GJRGARCH vs N-APARCH 30.148 11.934 15.908 9.164
N-APARCH vs N-FGARCH 21.816 52.104 37.834 47.568
ST-GARCH vs ST-APARCH 159.688 119.084 248.592  79.222
ST-GJRGARCH vs ST-APARCH 25.748 15.412 18.558 17.354
ST-APARCH vs ST-FGARCH 8.762 27.646 32.422 44.818
SKST-GARCH vs SKST-APARCH 167.376 134.806 186.022 77.49
SKST-GJRGARCH vs SKST-APARCH 26.388 18.518 19.916 17.154
SKST-APARCH vs SKST-FGARCH 11.064 38.588 33.902 46.58
SGED-GARCH vs SGED-APARCH 163.090 123.216 137.098 66.682
SGED-GJRGARCH vs SGED-APARCH 24.716 15.794 -19.958 13.778
SGED-APARCH vs SGED-FGARCH 12.574 19.094 30.93 40.332
JSU-GARCH vs JSU-APARCH 166.902 135.970 184.646 74.574
JSU-GJRGARCH vs JSU-APARCH 25.992 19.584 19.006 16.460
JSU-APARCH vs JSU-FGARCH 1.216 14.958 33.778 47.004
SGT-GARCH vs SGT-APARCH 154.116 108.794 157.816 66.148
SGT-GJRGARCH vs SGT-APARCH 24.028 12.516 15.348 13.442
SGT-APARCH vs SGT-FGARCH 10.89 27.402 30.93 38.618
GHST-GARCH vs GHST-APARCH 168.844 148.648 180.538 71.766
GHST-GJRGARCH vs GHST-APARCH 34.134 60.512 19.006 16.460
GHST-APARCH vs GHST-FGARCH -6.826 13.926 20.554 57.444

Note: The null hypothesis is rejected, except where indicated by boldface
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2.6.2. Fitting standardized innovations

2.6.2.1. Fitting the empirical distribution of return innovations

Table 15 reports the results obtained when comparing the empirical dis-
tribution of estimated innovations to the theoretical distribution used in
estimation for the four stock market indexes."? We use the Kolmogorov-
Smirnov (KS) test (Kolmogorov, 1933, Smirnov, 1939 and Massey, 1951),
which quantifies the distance between the empirical distribution function
of standardized innovation and the cumulative distribution function of
the reference distribution, and the Chi-square (Chi2) test (Pearson, 1900)
applied to a partition of the return data range into 10 bins.!* The null
distribution of these statistics is calculated under the null hypothesis
that the sample is drawn from the reference distribution. These tests
suggest that models with an asymmetric distribution for the innovations
are to be preferred. Test statistics also tend to be smaller for the APARCH
and FGARCH volatility specifications.

According to the KS test, models with N distributions fits the data
well 11 out of 76 cases (4 volatility models by 19 assets), ST fits the
data well in 53 cases, SKST in 54, SGED in 59, JSU in 47, SGT in 62
and GHST in 47 cases. Regarding volatility models, distributions with
GARCH model fit the data well 79 out of 133 cases (7 probability
distributions by 19 assets), GJRGARCH and APARCH fit the data well
in 85 cases and FGARCH in 84 cases. According to the Chi2 test,
models with N distributions fits the data well 1 out of 76 cases, ST fits
the data well in 20 cases, SKST and SGED in 32, JSU and SGT in 30
and GHST in 18 cases. Respect to volatility models, distributions with
GARCH, APARCH and FGARCH models fit the data well 40 out of 133
cases and GJRGARCH in 43 cases. To sum up, the SGED and SGT are
preferred to fit the innovations and GJRGARCH and APARCH to model
the volatility.

13. Results for other assets are available on request.
14. The number of bins affects the results of the Pearson test.
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Table IS: Goodness-of-fit tests for standardized innovations of stock market
indexes. Figures in parentheses denote p-values

IBEX35 NASDAQ100 FTSE100 NIKKEI225
KS Chi2 KS Chi2 KS Chi2 KS Chi2
N-GARCH 0.039 243110 0.043 86.329 0.032 107.345 0.051 243267

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ST-GARCH 0.022 21.348 0.028 17.048 0.020 37.191 0.039 21.667
(0.038) (0.011) (0.002) (0.048) (0.083) (0.000) (0.000) (0.010)

SKST-GARCH 0.027 9.892 0.030 7.344 0.031 15.078 0.038 13.744
(0.005) (0.359) (0.001) (0.601) (0.001) (0.089) (0.000) (0.132)

SGED-GARCH 0.022 50.690 0.023 5.633 0.027 17.152 0.026 39.174
(0.035) (0.000) (0.027) (0.776) (0.005) (0.046) (0.006) (0.000)

JSU-GARCH 0.026 10.010 0.030 6.336 0.031 13.381 0.041 14.011
(0.006) (0.349) (0.001) (0.706) (0.001) (0.146) (0.000) (0.122)

SGT-GARCH 0.029 23.392 0.028 6.001 0.034 17.480 0.028 39.408
(0.001) (0.005) (0.003) (0.740) (0.000) (0.042) (0.003) (0.000)

GHST-GARCH 0.021 8.799 0.028 7.665 0.019 22.349 0.037 10.983
(0.056) (0.456) (0.003) (0.568) (0.099) (0.008) (0.000) (0.277)

N-GJRGARCH 0.034 228.860 0.047 39.537 0.039 117.613 0.048 971626
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ST-GJRGARCH 0.024 49.752 0.031 40.861 0.029 57.236 0.038 73.794
(0.020) (0.000) (0.001) (0.000) (0.002) (0.000) (0.000) (0.000)

SKST- 0.018 14.610 0.022 12.553 0.016 8.206 0.036 43.630
GJRGARCH (0.129) (0.102) (0.041) (0.184) (0.222) (0.514) (0.000) (0.000)
SGED- 0.015 21.714 0.017 17.948 0.016 9.942 0.030 127.937
GJRGARCH (0.338) (0.010) (0.166) (0.036) (0.262) (0.355) (0.001) (0.000)
JSU- 0.017 14.262 0.020 12.947 0.016 5923 0.039 38.568
GJRGARCH (0.155) (0.113) (0.072) (0.165) (0.248) (0.748) (0.000) (0.000)
SGT- 0.021 20.689 0.025 20.488 0.026 11.848 0.029 133.807
GJRGARCH (0.046) (0.014) (0.012) (0.015) (0.008) (0.222) (0.002) (0.003)
GHST- 0.027 18.724 0.033 12.947 0.028 28.488 0.035 24.784

GJRGARCH (0.004) (0.028) (0.000) (0.165) (0.003) (0.001) (0.000) (0.000)

N-APARCH 0.036 248.980 0.047 141.086 0.042 111.868 0.048 243023
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ST-APARCH 0.026 48.544 0.030 29.656 0.031 44.470 0.038 47.912
(0.006) (0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
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IBEX35 NASDAQ100 FTSE100 NIKKEI225
KS Chi2 KS Chi2 KS Chi2 KS Chi2
SKST-APARCH 0.019 15.015 0.020 2.589 0.019 3.208 0.037 20.405
(0.093) (0.091) (0.062) (0.978) (0.110) (0.956) (0.000) (0.016)
SGED-APARCH 0.019 24.748 0.017 3.676 0.015 5960 0.031 54.437
(0.114) (0.003) (0.162) (0.931) (0.275) (0.744) (0.001) (0.000)
JSU-APARCH 0.020 16.025 0.020 1.759 0.018 3.576 0.038 15.731
(0.081) (0.066) (0.064) (0.995) (0.120) (0.937) (0.000) (0.073)
SGT-APARCH 0.019 21.066 0.026 5.237 0.025 6.753 0.029 60.521
(0.094) (0.012) (0.008) (0.813) (0.013) (0.663) (0.002) (0.000)
GHST-APARCH 0.030 22.105 0.031 8.823 0.030 21.973 0.037 20.293
(0.001) (0.009) (0.001) (0.454) (0.001) (0.009) (0.000) (0.016)
N-FGARCH 0.037 132.260 0.047 97.099 0.042 106.330 0.051 971730
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ST-FGARCH 0.027 14.633 0.025 32.188 0.033 44.745 0.037 60.110
(0.004) (0.102) (0.011) (0.000) (0.000) (0.000) (0.000) (0.000)
SKST-FGARCH 0.019 4.929 0.022 15.5601 0.019 2.967 0.034 27.787
(0.102) (0.840) (0.035) (0.077) (0.088) (0.966) (0.000) (0.001)
SGED-FGARCH 0.018 10.078 0.023 14.149 0.017 2.206 0.032 110.135
(0.142) (0.344) (0.029) (0.117) (0.158) (0.988) (0.000) (0.000)
JSU-FGARCH 0.019 4.467 0.026 12.654 0.020 2.393 0.035 22.448
(0.097) (0.878) (0.007) (0.179) (0.082) (0.984) (0.000) (0.008)
SGT-FGARCH 0.018 7.566 0.028 14.121 0.023 3.179 0.027 121.760
(0.123) (0.578) (0.002) (0.118) (0.022) (0.957) (0.005) (0.000)
GHST-FGARCH 0.026 15.856 0.032 33.125 0.032 25.915 0.037 25.226
(0.008) (0.070) (0.000) (0.000) (0.000) (0.002) (0.000) (0.003)

To compare the adequacy of the different distributions we can also em-
ploy out-of-sample density forecasts, as proposed by Diebold, Gunther
and Tay (1998) (DGT). Let f; (7:19:)i%1 be a sequence of m one-step-ahead
density forecasts produce by a given model, where Q is the conditioning
information set, and p;(y;|Q;)i%; the sequence of densities defining
the Data Generating Process y, (which is never observed). The null
hypothesis is Hy: f;(v;|Q)i21 = pi(:|1Q;)i%;. DGT use the fact that un-
der null hypothesis, the probability integral transform {; = f_ooo fi(t)dt
is i.i.d. with a Uniform(0,1) distribution. To check H, , they propose to
use an independence test for i.i.d. U(0,1). The i.i.d.-ness property of
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{; can be evaluated by plotting a histogram of {;. A humped shape of
the ¢-histogram would indicate that the issued forecasts are too narrow
and that the tails of the true density are not accounted for. On the other
hand, a U-shape of the histogram would suggest that the model issues
forecasts that either under- or overestimate too frequently [Bauwens,
Giot, Grammig and Veredas (2000)].

Figures 12 a) and 12 b) show a sample of such histograms for the assets
in our data set. The humped shape of the histograms shows that symme-
trical distributions are not suitable to model the OIL and US BOND 10Y
returns. Figures 12 c) and 12 d) show that the skewed Generalized Error
distribution is not suitable for NIKKEI 225. It is appropriate for JPY/USD
because its probability integral transform is Uniformly distributed. In
12 e) the Johnson S, distribution is also appropriate for AUD/USD. Fi-
gure 12 f) shows that the assumption of a Generalized Hyperbolic skew
Student-t for the innovation is not appropriate for SAN. These results
are consistent with the goodness-of-fit tests previously carried out. For
the rest of assets, the results are similar, the symmetrical distributions
and the Generalized Hyperbolic skew Student-t for the innovations are
not appropriate for most of the assets whereas skewed Student-t, skewed
Generalized Error and Johnson S, are suitable.

2.6.2.2. Fitting the sample moments of return innovations

For a given asset, the innovations change with the estimated model, so we
compare the theoretical moments of a given probability distribution with
the sample moments for the standardized innovations for that model. In
fact, however, sample moments for innovations are similar across models,
showing a near zero mean and a unit variance in all models, as expected.
But that is also the case under all the estimated probability distributions,
so it makes sense to focus on the ability of each estimated distribution to
fit the sample skewness and kurtosis of standardized innovations. Table
16 compares the theoretical value of skewness and kurtosis from the esti-
mated probability distribution with the similar sample moments of the
standardized innovations calculating the absolute differences between
these both values for stock market indices. Obviously, the Normal and
the symmetric Student distribution do not produce any skewness. This is
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Figure I2: (-histograms (00 cells) for 4173 one-step-ahead forecasts. We
assume different distributions with AR(I)-FGARCH(I.I) model for different

assets

(a) OIL - N

[—_——

{c) NIKKEI 225 - SGED

-

(e) AUD,/USD - JSU

(b) Us BOND 10% - 5T

[——

(d) JPY/USD - SGED

-

(f) SAN - GHST

a limitation of these distributions since skewness and kurtosis are pre-
sent in standardized innovations. For most assets, the skewed t-Student
distribution produces negative skewness, although not as much as it is
observed in the data. The unbounded Johnson distribution achieves a
higher level of negative skewness, often being close to that observed in
the data. The GHST distribution does not fit innovation moments very
well, especially overestimating the degree of negative skewness. Indeed,
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the GHST distribution usually produces the maximum absolute diffe-
rence between the theoretical and the sample skewness in most stock
market indexes, individual stocks and exchange rates. The GHST distri-
bution has been proposed as being suitable for assets with high skew-
ness and heavy-tailed (Aas & Haff, 2006) and the assets we consider do
not have high skewness. In fact, only the standardized innovations in
SILVER and AUD/USD have a negative high skewness and in these two
cases models with GHST produce the best fit to sample skewness. Addi-
tionally, asymmetric probability distributions are unable to reproduce
the positive skewness shown by a few return innovations, such as those
in IRS5Y and GAS.

On the other hand, the GHST distribution can explain the high kurto-
sis often observed in our standardized innovations, except when used
with a GJRGARCH volatility for stock market indexes or when used with
APARCH and FGARCH specifications for IRS5Y. The symmetric and the
skewed Student-t distributions explain the level of kurtosis observed in
the data'®, while the Johnson distribution generally implies higher kur-
tosis than it is observed in the data'.

In fact, for skewness the results are concentrated in the SKST distribu-
tion, it fits skewness best in 8 of the 19 cases. For kurtosis results are not
so concentrated: ST (for 5 assets), SKST (4), SGT (6) y SGED (4) fit kurto-
sis best. Pulling together the fit of both moments, the SKST distribution
performs best in 12 out of the 38 cases, followed by SGT and SGED with
7 cases. The FGARCH specification fits skewness best in 7 assets, while
the GARCH specification fits kurtosis best in 8 assets. Overall, the SGT
and SKST distributions with GARCH, GJR-GARCH and FGARCH do bet-
ter in capturing skewness and kurtosis of the standardized innovations
than other combinations.

15. The theoretical kurtosis for the Student-t distribution has been calculated as K = ﬁ + 3. For GOLD
and SILVER, the Student-t distribution for some volatility models produces negative kurtosis because we
have obtained in the estimation a number of degrees of freedom (v) less than 4.

16. For GOLD and SILVER, as well as for IBM and BP, the unbounded Johnson distribution produces
extremely high kurtosis because the estimated kurtosis parameter () of the Johnson distribution is close to
1. As ¢ > = the distribution approaches the Normal density function and we obtain a kurtosis = 3.
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Table 16: Absolute differences between standardized innovation moments and
theoretical moments for stock market indexes. Bold figures show the lowest value
for each asset

IBEX35 NASDAQ100 FTSE100 NIKKEI 225

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis
N-GARCH 0.263 1.327 0.235 0.900 0.318 0.748 0.377 1.334
ST-GARCH 0.284 0.149 0.245 0.651 0.317 0.488 0.398 0.278
SKST-GARCH 0.079 0.045 0.048 0.555 0.065 0.313 0.197 0.127
SGED-GARCH 0.104 0.420 0.101 0.206 0.102 0.063 0.341 0.074
JSU-GARCH 0.070 2.529 0.145 3.869 0.062 1.020 0.076 3.273
SGT-GARCH 0.114 0.254 0.123 0.222 0.118 0.082 0.351 0.105
GHST-GARCH 0.345 1303 0.416 2406 0.210 0.333 0.249 1.558
N-GJRGARCH 0.260 0.952 0.275 0.734 0.332 0.633 0.366 1.499

ST-GJRGARCH 0.269 0.159 0.288 0.476 0.332 0.196 0.384 0.267

SKST-GJRGARCH 0.032 0.119 0.030 0.421 0.047 0.115 0.198 0.339

SGED-GJRGARCH 0.055 0.187 0.070 0.188 0.066 0.011 0.316 0.268

JSU-GJRGARCH 0.025 0.952 0.069 2.094 0.171 0.165 0.032 1.718

SGT-GJRGARCH 0.063 0.084 0.096 0.203 0.081 0.010 0.336 0.264

GHST-GJRGARCH 0.501 4.861 0.843 18.402 0.304 2.140 0.731 16.204

N-APARCH 0.251 0.916 0.307 0.773 0.338 0.685 0.365 1.577

ST-APARCH 0.258 0.159 0.332 0.420 0.346 0.085 0.395 0.451

SKST-APARCH 0.019 0.130 0.061 0.323 0.052 0.033 0.206 0.511

SGED-APARCH 0.043 0.172 0.094 0.108 0.067 0.088 0.313 0.461

JSU-APARCH 0.027 0.852 0.023 1.778 0.176 0.097 0.001 2.072
SGT-APARCH 0.049 0.058 0.118 0.127 0.083 0.089 0.343 0.458
GHST-APARCH 0.391 2.119 0.334 2.779 0.199 0.498 0.277 1.444
N-FGARCH 0.232 0.763 0.299 0.677 0.338 0.649 0.385 1.632
ST-FGARCH 0.250 0.197 0.297 0.204 0.349 0.038 0.415 0.513

SKST-FGARCH 0.003 0.184 0.053 0.352 0.055 0.002 0.216 0.596

SGED-FGARCH 0.027 0.082 0.122 0.131 0.065 0.099 0.318 0.588

JSU-FGARCH 0.035 0.745 0.185 0.140 0.201 0.021 0.051 1.326

SGT-FGARCH 0.035 0.011 0.106 0.168 0.080 0.096 0.353 0.582

GHST-FGARCH 0.291 2.414 0313 2303 0.080 1.123 0.218 0.818
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2.6.3. Fitting observed returns

2.6.3.1. Fitting the empirical distribution of asset returns

How about the ability of each estimated model to fit sample return mo-
ments? Unfortunately, except in cases when returns do not show any
stochastic structure, it is not easy to derive the moments of asset re-
turns from the estimated probability distribution for return innovations.
Hence, we characterize the implied probability distribution for returns
by simulation. Taking random draws for the estimated probability dis-
tribution for innovations, we generate 1000 time series for returns with
the same length as our data set. For each simulation we apply the two-
sample KS test (Kolmogorov, 1933, Smirnov, 1939 and Massey, 1951)
and the Chi2 test (Pearson, 1900) to compute the failure rates of the
respective null hypotheses.

The KS test quantifies the distance between the empirical distribution
function of observed returns and the one obtained from each simulated
time series. The KS test statistic is:

D= SupxlFl,n(x) - Fz,n’(x)|

where sup, is the supremum of the set of distances between two empi-
rical distributions, F, , and F,, . The null hypothesis is rejected at level
o if D > c(a) ’::—1:1,' where n and n' are the sizes of first and second sample
respectively. The value of c(a) is given in the table below for each level

of a,
a 0.10 0.05 0.025 0.01 0.005 0.001
cla) 1.22 1.36 1.48 1.63 1.73 1.95

Table 17 reports the failure rates of the KS and Chi2 null hypothesis
at confidence level 99%. The models with lower failure rate in either
the KS and the Chi2 tests are the SGED distribution with GJRGARCH,
APARCH or FGARCH volatility specifications, and the SKST and JSU
distributions with APARCH and FGARCH specifications, respectively.
Hence, we observe again the preference for asymmetric distributions
and volatility models with leverage.
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Table 17: Goodness-of-fit tests for observed returns of stock market indexes.
Figures denote the fail rates for each model

confidence level = 0.99 IBEX35 NASDAQ100 FTSE100 NIKKEI225

fail rate KS Chi2 KS Chi2 KS Chi2 KS Chi2
N-GARCH 0.821 0.985 0.993 1.000 0.367 0.846 1.000 0.999
ST-GARCH 0.069 0.978 0.391 0.999 0.100 0.676 0.798 0.997
SKST-GARCH 0.202 0.714 0.575 0.994 0.551 0.423 0.836 0.773
SGED-GARCH 0.110 0.594 0.155 0.991 0.519 0.461 0.460 0.979
JSU-GARCH 0.208 0.713 0.549 0.993 0.555 0.436 0.855 0.542
SGT-GARCH 0.324 0.669 0.332 0.992 0.800 0.428 0.465 0.994
GHST-GARCH 0.067 0.889 0.416 0.998 0.067 0.447 0.845 0.811
N-GJRGARCH 0.593 0.997 0.993 1.000 0.721 0.970 0.997 0.999
ST-GJRGARCH 0.149 0.995 0.420 1.000 0.221 0.887 0.806 0.997
SKST-GJRGARCH 0.029 0.775 0.185 0.995 0.054 0.433 0.789 0.818
SGED-GJRGARCH 0.009 0.668 0.051 0.993 0.056 0.450 0.521 0.993
JSU-GJRGARCH 0.025 0.803 0.164 0.996 0.050 0.459 0.841 0.637
SGT-GJRGARCH 0.074 0.648 0.150 0.990 0.270 0.421 0.461 0.991
GHST-GJRGARCH 0.223 0.974 0.617 0.996 0.218 0.705 0.923 0.804
N-APARCH 0.672 0.999 0.992 1.000 0.819 0.993 0.999 0.998
ST-APARCH 0.250 0.994 0.407 1.000 0.313 0.943 0.791 1.000
SKST-APARCH 0.032 0.812 0.177 0.993 0.040 0.527 0.747 0.826
SGED-APARCH 0.024 0.706 0.058 0.989 0.034 0.583 0.565 0.989
JSU-APARCH 0.037 0.818 0.154 0.996 0.037 0.551 0.762 0.708
SGT-APARCH 0.045 0.657 0.170 0.983 0.219 0.515 0.473 0.996
GHST-APARCH 0.318 0.984 0.463 0.999 0.302 0.789 0.808 0.938
N-FGARCH 0.735 0.998 0.984 1.000 0.858 0.983 1.000 1.000
ST-FGARCH 0.305 0.999 0.285 1.000 0.423 0.939 0.768 0.999
SKST-FGARCH 0.033 0.831 0.158 0.998 0.046 0.453 0.714 0.825
SGED-FGARCH 0.030 0.746 0.142 0.999 0.025 0.452 0.607 0.991
JSU-FGARCH 0.033 0.864 0.338 1.000 0.047 0.500 0.700 0.700
SGT-FGARCH 0.040 0.670 0.336 0.998 0.173 0.405 0.441 0.989

GHST-FGARCH 0.257 0.998 0.455 1.000 0.344 0.861 0.802 0.959
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2.6.3.2. Fitting the sample moments of asset returns

In addition to the fit to the whole distribution, we now examine the
ability of each combination of volatility specification and probability
distribution to fit the main moments of observed returns: sample mean,
standard deviation, skewness, kurtosis, maximum, minimum and the
observed range. To that end, we assign to each model the average va-
lue for each of these moments over the set of 1000 simulations, to be
compared with their sample return analogues. Table 18 presents sample
return moments for stock market indices together with a summary of the
average simulated return moments over probability distributions and
volatility specifications'’. Column 1 in Table 18 displays sample mo-
ments, while column 2 shows the median value of the average simulated
moments across all models (28 in total). The remaining columns show
median values of moments across subsets of models'®. The first panel,
from third to ninth column, considers median values of moments across
alternative volatility specifications, for a given probability distribution
for return innovations. The second panel, from tenth to thirteenth co-
lumn, presents median values of simulated moments across probability
distributions, for a given volatility specification. We also compute the
mean absolute difference between the average moments obtained by si-
mulation and the analogue sample moments (mean, standard deviation,
skewness, kurtosis, maximum, minimum and the observed range). The
last row displays the median value of these absolute differences. Finally,
we take the range' of MAE values across the set of volatility specifica-
tions or across the set of probability distributions, as shown in the last
two columns.

The first panel shows that for most assets all probability distributions
explain the standard deviations of return data similarly, with the Normal
and Student-t distributions doing somewhat better than the rest. The
Johnson S, distribution approximates very well the level of skewness in
returns and skewed Generalized Error distribution does better than other
distributions to approximate the level of kurtosis. We conclude that
the Normal distribution performs well on this account for stock market

17. Results for other assets are available on request.
18. Remember that for each model we take the average value of each moment over 1000 simulations.
19. The difference between the highest and the lowest MAE values.
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indexes because it fits very well the second moment but not because it
fits well the higher order moments, i.e. the third and fourth moment. In
the second panel, the differences between volatility specifications are
small compared with differences between probability distributions but
APARCH and FGARCH models fit standard deviation better than another
volatility models, GJRGARCH and FGARCH volatilities seem to fit skew-
ness best, while APARCH and FGARCH fit kurtosis best.

Summarizing, all the probability distributions other than the Normal
produce levels of kurtosis as high as those in the return data, but they
fall short of explaining the negative skewness observed in some market
returns. They also fall a bit short of reproducing the maximum returns.
However, they tend to produce a minimum that is higher in absolute
value than the one for observed returns. Consequently, the range of values
implied by the estimated models is just a bit narrower than that observed
in return data for all assets.

According to the median MAE, the Normal distribution is the preferred
one for 2 assets, the symmetric Student-t is the best for 4 assets, the
skewed Student-t for 3, the skewed Generalized Error for 2, the Johnson
S, for 4, the skewed Generalized-t for 1 and Generalized Hyperbolic skew
Student-t for 3 assets. In terms of volatility models, the standard GARCH
is the preferred volatility specifications for 4 assets, the GJR-GARCH model
for 1, the APARCH model for 6 and the FGARCH model is the best for 8
assets. So, from this point of view, it looks as if the FGARCH and APARCH
volatility specifications and the symmetric Student-t and the Johnson S,
probability distribution should be preferred.

If we exclude from consideration the ability to reproduce the maximum
and minimum observed returns the Normal distribution is the preferred
one for 2 assets, the symmetric Student-t is the best for 2 assets, the
skewed Student-t for 2, the skewed Generalized Error for 5, the Johnson
S, for 3, the skewed Generalized-t for 2 and Generalized Hyperbolic skew
Student-t for 3 assets. In terms of volatility models, the standard GARCH
is the preferred volatility specifications for 5 assets, the GJR-GARCH model
for 1, the APARCH model for 7 and the FGARCH model is the best for 6
assets. Again, the APARCH and FGARCH volatility models perform better
than GARCH and GJR-GARCH, but now the skewed Generalized Error
distribution is the preferred one.
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Interestingly enough, the last two columns show that median values of
the simulated statistics for different volatility specifications are more
similar among them than median values for the alternative probability
distributions. This suggests again that the assumption we can make on
the probability distribution of return innovations may be more impor-
tant to fit return data than the assumption on the volatility specification.

2.7. VaR Performance

We now analyze the VaR performance of our estimated models restricting
our attention to the left tail of the distribution and the 1% significance
level. The choice of the 1% level is a compromise between trying to cap-
ture extreme events and trying to avoid a too low number of exceptions.
Results for alternative significance levels are available from the authors
upon request. Considering the left tail is not a trivial choice, since results
for both tails may differ significantly for asymmetric return distributions.
In all cases we present out-of-sample VaR forecasts over the last five
years in the sample: 2011-2015 (1260 data observations). Every day
we compute 1-day ahead 1% VaR, reestimating each model every 50
days. The latter choice tries to reduce the computational cost as well
as avoiding frequent parameter variation that might be due in part to
just noise.

We estimate the one-step ahead VaR parametrically as VaR,, = u,(0) +
0.(0)F~(a|0), where p.(68) represents the conditional mean, o.(0) is
the conditional standard deviation and F~*(«|6) denotes the correspon-
ding quantile of the distribution of the standardized innovations z, at
a given a% significance. After that, we examine the performance of
VaR models through standard tests: the unconditional coverage test
of Kupiec (1995), the independence and conditional coverage tests of
Christoffersen (1998), the Dynamic Quantile test of Engle and Man-
ganelli (2004), as well as by evaluating the Asymmetric Linear Tick
loss function (AlTick) proposed by Giacomini and Komunjer (2005).
For a comprehensive review on VaR forecasting and backtesting, see
Nieto and Ruiz (2015).

The unconditional coverage test introduced by Kupiec (1995) is based
on the number of violations, i.e. the number of times (T,) that returns
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exceed the predicted VaR over a period T for a given significance le—
vel. If the VaR model is correctly specified, the failure rate (7 = Tl

should be equal to the pre-specified VaR level (). The null hypothesis
HO: 7w = o is evaluated through a likelihood ratio test:

L) (1= @)la™\ 1oa
LRy = =2In (L(H) ) —2in ((1 — ﬁ-)Toﬁ-H) X1

where T,=T-T.

Two other tests by Christoffersen (1998) examine whether VaR excee-
dances are independent. We consider two states of nature each period:
state O if the return does not fall below VaR: . < VaR,, and state 1, if
1. < VaR,. For the alternative hypothesis of VaR inefficiency, it is as-
sumed that the process of violations I;(a), where I,(a) = 1if "t < VaR,
and (@) =0 otherwise, can be modeled as a Markov chain with
M = Pr[l;(a) = jlI;-1(a) = i]. Let us then denote by le the number of
observations in state j after having been in state i in the previous period
and define T, = T,/ + T, and T, = T, + T . The two probabilities of a
VaR excess (state 1), conditional on the state of the previous period «
and 7 are estimated by #, = T /(T, + T,) and #, = T, [(T,,+ T, ). Under
the null hypothesis of independence of VaR exceedances: 7, =7, ==
(T,,+ T,)IT, the likelihood function is L(TT) = (1 — #)"o#"

The likelihood under the alternative hypothesis is: L(T;) = (1 — #py)
T°°ﬁ§‘il 1- ﬁ11)T1°ﬁ1Til

The independence test of Christoffersen (1998) is a test of the hypothe-
sis of serial independence in VaR exceedances against a first-order
Markov dependence. The likelihood ratio LR;,q statistic is: LR;,q =
—2In(L(M)/L(M,)) with a distribution Xi. The conditional coverage test
is based on the likelihood ratio statistic, LR, = —2In(L(Il,)/L(T1;))=
LRy¢ + LRyyq, which is asymptotically distributed x3.

While the conditional coverage test is easy to use, it is rather limited for
two main reasons, i) the independence is tested against a very particular
form of alternative dependence structure that does not take into account
a dependence of order higher than one, ii) the use of a Markov chain
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only considers the influence of past violations I (a) and not the influence
of any other exogenous variable. The Dynamic Quantile Test propo-
sed by Engle and Manganelli (2004) overcomes these two drawbacks
of the conditional coverage test. These authors suggest using a linear
regression model that links current violations to past violations. Let us
define the auxiliary variable: Hit(a) = I(a) - a, so that Hit(a) = 1 - «
if » < VaRy—1(a) and Hit,(a) = —a otherwise. The null hypothesis
of this test is that the sequence of hits (Hit) is uncorrelated with any
variable that belongs to the information set Q, | available when the VaR
was calculated and it has a mean value of zero, which implies that the
hits are not autocorrelated. The Dynamic Quantile test is a Wald test of
the null hypothesis that all slopes in the regression model,

14 q

i=1 j=1

are zero, where X; are explan%tory variables contained in Q, ,. The test
statistic has an asymptotic Xp+q+1 distribution. In our implementation
of the test, we use p = 5 and g = 1 (where X; = VaR(a)) as proposed
Engle and Manganelli (2004). By doing so, we are testing whether the
probability of an exception depends on the level of VaR.

To evaluate the consequences of a VaR exceedance, we use the Asym-
metric Linear Tick loss function (AlTick) proposed by Giacomini and Ko-
munjer (2005), which takes into account the magnitude of the implicit
cost associated with VaR forecasting errors. Hence, it takes into consi-
deration not only the returns that exceed the VaR, but also the oppor-
tunity cost produced by an overestimation of VaR. When there are not
exceptions, the loss function penalizes for the excess capital retained:

_(@—De1if €41 <0
La(eer) = aeriq if ery1 20

where €11 = 1t41 — VaR¢ ;4. Giacomini and Komunjer use the asymme-
tric linear loss function with a equal to the significance level used to fo-
recast VaR. The AlTick function can be seen as the implicit loss function
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whenever the object of interest is a forecast of a particular quantile of
the conditional distribution of returns. That way, a VaR model is prefe-
rable if it has a lower average value of the loss function.

The different combinations of probability distributions and volatility
specifications, applied to each of the 19 assets considered, yield a large
number of VaR tests and it is hard to summarize so much information
in order to achieve some clear-cut conclusion on the adequacy of each
model.

Some authors compare VaR methodologies using a two-stage selection
process. This approach proposed by Sarma et al. (2003) consists in remo-
ving in a first stage those methods or models that fail to pass statistical
accuracy tests (backtesting) like those described above. The VaR models
selected in this stage are then compared in a second stage on the basis
of loss functions. Even though this two-stage selection approach helps
in selecting a smaller set of competing models, it could fail to identify
suitable models because they might have been removed in the first sta-
ge. Indeed, a model may be rejected in the first stage because of failing
to pass a given test at a specific confidence level, despite producing a
smaller loss than another one that has been judged to be statistically ap-
propriate in the first stage. In the extreme case when we identify a single
model as appropriate in the first stage, we would be making a decision
based on statistical accuracy tests without taking into account the size
of the losses beyond the VaR. Under that approach the VaR accuracy
tests resemble more a decision-making process than an evaluation using
loss functions.

Instead, we will proceed in the next section along four lines: i) the fre-
quency of rejections of a given model when applying each test to the
set of assets, ii) how often the p-value of a given test decreases when
switching between two models differing in either the probability distri-
bution or the volatility specification, iii) selecting the preferred models
by a concept of Dominance among VaR models we introduce below, iv)
implementing a Model Confidence Set approach to select the preferred
VaR models for each asset. This approach is based on the use of a spe-
cific loss function. The first three criteria are based on properties of the
tests for validation of VaR forecasts, while the fourth criterion deals with
the size of the sample returns exceeding the estimated VaR.

9l
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2.7.1. Frequency of violations

For each asset, we calculate the number of observed violations of VaR
forecasts, the statistic and p-value of each test for each combination
of volatility model and probability distribution for the innovations®.
Naturally, violation rates close to a = 0.01 (13 violations) are desirable.
Further, under the Basel Accord, models that over-estimate risk are pre-
ferable to those that under-estimate risk levels. In our case, less than 20
violations of VaR would define the 'green zone’, between 20 and 50 vio-
lations would correspond to the ’yellow zone’ and the 'red zone’ would
be defined by more than 50 violations?. In fact, falling inside the green
zone is not necessarily a good thing if the number of violations of VaR
is too low, since then the bank would be taking an excessive opportunity
cost of capital.

We never observed a model to fall in the red zone for any asset. The
expected number of violations (13) falls in the green zone, so a good
model should be in that zone. Across the 76 VaR analysis performed (4
volatility specifications and 19 assets) models under the Normal distri-
bution fell in the green zone 26 times out of 76 (34%), 55 times under
the Student-t distribution (72%), 72 times under SKST (95%), 69 times
under SGED (919%), 75 times under JSU (99%), 73 times under SGT (969)
and 70 times under GHST (929%). All the other models fell in the yellow
zone. The Normal distribution falls too often in the yellow zone. The
frequency of the Student-t distribution to produce a model in the green
zone was not very high either. All other probability distributions lead
frequently to models in the green zone.

Figure 13 shows the median number of VaR violations for each combi-
nation of probability distribution and volatility specification. The Nor-
mal distribution leads to the largest median number of violations (22)

20. These results are available from the author upon request.

21. In terms of Basel Accord, based on a sample of 250 observations, if the number of exceptions is
less than, or equal to 4 (the green zone), the test results are consistent with an accurate model and the
possibility of erroneously accepting an inaccurate model is low. At the other extreme, if there are 10 or more
exceptions (the red zone), the test results are extremely unlikely to have resulted from an accurate model,
and the probability of erroneously rejecting an accurate model on this basis is remote. In between these
two cases we have the yellow zone, where the backtesting results could be consistent with either accurate
or inaccurate models, and the supervisor should encourage a bank to present additional information about
its model before taking action. We have applied to these thresholds a scale factor based on our sample size
of 1260 observations.
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Figure 13: Median number of VaR violations for each model over the set of |19 assets

Median VaR by model

across the 76 models (4 volatility specifications and 19 assets). Since
the expected number of violations is 13, the Normal distribution clearly
underestimates the level of risk. The GHST distribution produces the lowest
median number of violations (10), with a clear overestimation of risk. All
the other probability distributions have a median number of violations
around 15, with a slight underestimation of risk that is more evident
for the Student-t distribution. We can say that except by the Normal
and GHST distributions, all other distributions perform well. Being more
specific, the median frequency of violations is 1.75% for models with
Normal innovations, 1.27% for Student-t innovations, 1.19% for skewed
Student-t, skewed Generalized Error and skewed Generalized-t innovations,
1.11% for Johnson S, innovations and 0.79% for Generalized Hyperbolic
skew Student-t innovations. According to the frequency of violations,
the unbounded Johnson S, distribution shows the best behavior among the
asymmetric probability distributions. The performance of GHST might be
acceptable under some criteria, although it would lead to an excessive
opportunity cost of capital.

Differences among volatility specifications are much smaller. Models
with a GARCH specification fell 114 times out of 133 cases (7 probability
distributions and 19 assets) in the green zone (86%), 109 times for the GJR-
GARCH (829%), 108 times for APARCH (81%) and 109 times for FGARCH
(829%) out of 133 VaR analysis. The median number of violations was 15,
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15, 16 and 16, respectively, very similar across volatility specifications.
The frequency of violations for all volatility specifications is 1.19% for
GARCH and GJR-GARCH, and 1.27% for APARCH and FGARCH models.
This result already suggests the need to be careful when choosing an
appropriate probability distribution for return innovations. Selecting the
best volatility specification is also important, but the consequences
of not making the right choice do not seem to be so crucial.

It is also interesting to examine the performance by asset type. Most
models tend to overestimate risk in energy commodities (OIL and GAS).
The median number of violations over the set of 28 models (7 probabi-
lity distributions and 4 volatility specifications) is 7 for OIL and 5 for
GAS (see Figure 14). A similar result is obtained for the GBP/USD and
AUD/USD exchange rates, with a median number of 10 violations in
both cases, which is not the case for the two other exchange rates®’. But
the general result is that more often than not, models tend to underesti-
mate risk in all assets, with a number of violations above the expected
value of 13. Underestimation is especially evident in the non-industrial
metals (GOLD and SILVER) and some Spanish stock market variables
(SAN and IBEX).

2.7.2. Switching between models

For 19 assets, we have a total of 216 tests performed under each probabi-
lity distribution, and 378 tests under each volatility specification®. They
produce a large amount of information, and we need to design ways to
summarize that information in order to be able to draw some conclusion
on the relative merits of each probability distribution and each volatility
specification. This is what we do in the next sections.

We start by comparing, for each of the four VaR tests described above
(Kupiec, independence, conditional coverage and Dynamic Quantile
tests), the p-values of the test statistics for models that differ in either
the probability distribution for the innovations or in the specification of

22. The median number of violations is also below 13 for BP, but it is so close to that target that we have
to consider the difference as sampling error.
23. Notice that the independence and the conditional coverage tests not always can be applied.
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Figure 14: Median number of VaR violations for each asset over the set of 28 models

Median VaR by asset class
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volatility dynamics. In these tests the null hypothesis is HO: the VaR mo-
del is ’appropriate’, in some sense that is specific to each test. As the pro-
bability of finding a similar sample with a more contrary evidence to HO,
the p-value gives us a numerical indication on how favorable our sample
to HO is. Hence, when comparing any two VaR forecasting models, we
should prefer the one with a higher p-value in VaR validation tests. To
summarize the results of this analysis, Table 19 displays the number of
cases in which the p-value of the test statistic increases or decreases when
we change either the probability distribution or by the specification of the
volatility model. We cannot make any formal testing, but by comparing
p-values, we are searching for patterns that might suggest that a particu-
lar model is preferred over a given alternative.

If we consider all the possible specifications sharing the same proba-
bility distribution for return innovations, we see that switching from a
Normal to a Student-t distribution for return innovations increases the
p-value of VaR tests in 160 out of a total of 216 comparisons, suggesting
in those cases a more accurate VaR model**. Even though the test statis-
tics are obviously subject to sampling error, that frequency of increases

24. The number of possible comparisons arises from applying all the VaR tests to all the assets. The
difference between this number and the sum of increases and decreases in the p-value is the number of cases
in which the p-value of the test statistic does not change.
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in p-value suggests that, as expected, the Student-t distribution is ge-
nerally more appropriate than the Normal distribution to represent fi-
nancial returns. Switching from the symmetric to the skewed Student-t
distribution achieves a further increase in p-value in 114 comparisons,
while decreasing in 75 cases. Moving from the asymmetric Student-t
to the unbounded Johnson distribution achieves an increase in 91 cases
while decreasing in 55 cases. Switching from the asymmetric Student-t
(SKST) to other asymmetric distributions (SGT, JSU, SGED), the p-value
increases more often than otherwise. On the contrary, if we switch from
the SKST, SGED, JSU or SGT distributions to the GHST distribution, the
opposite happens, with the p-value usually decreasing. Hence, we consi-
der the SKST, SGED, JSU and SGT distributions to be preferable to GHST.
Between these asymmetric distributions, switching to JSU or SGT leads
to an increase in p-value in a greater number of cases.

Among volatility models, switching from the symmetric GARCH to GJR-
GARCH increases the p-value of the statistic in 176 out of 378 comparisons.
The p-value increases in 131 cases when switching from GJR-GARCH to
APARCH, but it decreases in 167 cases.

On the other hand, if we move from the APARCH to the FGARCH model,
the p-value increases in 151 out of 378 cases, decreasing in 128 cases.
Overall, the FGARCH model seems to be the preferable volatility speci-
fication. Percent differences between the number of cases in which the
value of the test statistic increases or decreases when switching between
volatility models are much smaller than the ones obtained when swit-
ching between two probability distributions. This suggests again that,
according to the performance of the models for VaR estimation, the
specification of the volatility dynamics is not as important as the choice
of probability distribution for the innovation in returns.

2.7.3. Dominance among VaR models

In the previous sections we have used four backtesting tests for VaR
performance: the unconditional likelihood-ratio test, the independence
test, the conditional coverage test, and the dynamic quantile test, and
each test has been run for a variety of models and assets. In this section
we evaluate the adequacy of the different models considered for VaR
forecasting by comparing the specific situations in which each model
has been rejected by each test.
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Table I9: Number of cases in which the p-value of the test statistic increases
or decreases when changing the probability distribution or the volatility model

for all assets

For each test, the left (right) column shows the number of cases when the p-value
increases (decreases) when switching between probability distributions (upper pa-
nel) or between volatility models (lower panel). The last two columns show the
results when aggregating results for the four tests. LR _denotes the unconditional
coverage test of Kupiec and LR, , and LR _are the independence and the condi-
tional coverage tests of Christoffersen, respectively. DQT denotes the Dynamic
Quantile test. Rows with bold figures show the total number of tests run.

IR IR, LR DQT  Total
Total number of statistics 76- 32- 32 76 216
Increases/Decreases | T A 2 2
N — ST 64 12 8 24 30 2 58 18 160 56
ST — SKST 45 11 9 20 21 7 39 37 114 75
SKST — JSU 25 6 4 15 16 4 46 30 91 55
SKST — SGT 14 15 6 12 16 2 49 27 85 56
SKST — GHST 33 37 9 19 11 16 32 44 85 116
SKST — SGED 17 16 5 15 14 6 47 29 83 66
SGED — JSU 28 13 8 9 9 8 41 35 86 65
SGED — SGT 6 11 7 2 6 3 52 24 71 40
SGED — GHST 29 38 9 16 8 17 29 47 75 118
JSU — SGT 10 30 12 6 9 9 43 33 74 78
JSU — GHST 22 43 8 17 8 18 25 51 63 129
SGT — GHST 29 29 6 16 2 20 29 47 66 112
Total number of statistics 133 56 56 133 378
Increases/Decreases R R A AR A S N AR SN
GARCH — GJRGARCH 46 56 36 19 35 21 59 74 176 170
GJRGARCH — APARCH 32 50 25 16 16 26 58 75 131 167
APARCH — FGARCH 34 44 21 13 18 16 78 55 151 128
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We base our analysis in a new concept of dominance between VaR
models we introduce in this chapter®. Let us consider & tests that we
apply to m alternative models to represent the dynamics of n assets.
Each model is estimated for each of the n assets and subject to the
k tests.

Definition 1. We say that model M1 is dominated by model M2 if i) M1
has been rejected in at least as many cases as M2, and ii) whenever M2
is rejected by a test, M1 is also rejected.

This definition introduces a transitive relationship among VaR models,
although it is too strong to be satisfied in practice. So, we also consider
the weaker concept of p-dominance.

Definition 2. Given a confidence level between 0 and 1, we say that
model M1 is p-dominated by model M2 if i) M1 has been rejected in at
least as many cases as M2, and ii) in a percentage of at least p of the
cases when M2 is rejected by a test, M1 is also rejected.

In the special case p = 1 we have the first dominance criterion above.
Unfortunately, for p < 1, p-dominance is not a transitive relationship.
Notice that p does not need to be related to the confidence level at
which VaR validation tests are implemented. We would expect p to be
around .90 in most practical applications.

The interesting feature of this dominance criterion is that it compares
any two model specifications across all the statistical tests and assets
thereby allowing us to achieve some robust results. The criterion could
accommodate different weights for each test depending on the relevance
we want to assign them. The dominance criterion would then use the
number of rejections in each test, weighted by relevance. An interesting
possibility would consist of assigning a larger weight to tests having
a larger ability to discriminate among models. Weights could also be
chosen as a bounded function of the size of the test rejection, either in
terms of the test statistic or the p-value of the test.

25.  Sener et al. (2012) introduce a ranking model and a complementary predictive ability test statistic to
investigate the forecasting performances of different Value at Risk (VaR) methods. The increasing literature
on competitions among a wide array of alternative forecasting models is stimulating a well needed literature
on this issue.



Sample Size, Skewness and Leverage Effects in Value at Risk and Expected Shortfall Estimation

The dominance criterion could also be used to choose among forecas-
ting models that are required to satisfy some condition to be considered
acceptable. For instance, if competing models are used over a number
of periods to forecast a given variable, and there is a maximum forecast
error that is acceptable, the dominance relationship would be based on
the number of periods in which each model exceeds that error threshold.

Table 20 contains the information needed to establish dominance compari-
sons. The upper panel corresponds to implementing the VaR validation tests
at 99% confidence, while the lower panel has been obtained with test results
implemented at 95% confidence. In each panel, the upper part compares
the rejections of models using probability distributions D1 (left) and D2
(right) when combined with all the volatility specifications. The lower part
compares the rejections of models made up with volatility specifications M1
(left) and M2 (right) when combined with all the probability distributions.
The first two columns of each panel in Table 20 show the number of cases
when the two probability distributions or the two volatility specifications
listed in the first column have been rejected by the data when applying
the unconditional coverage tests of Kupiec. The third column displays the
percentage of rejections of D2 (M2) that were also rejections of D1 (M1).
We will conclude that the probability distribution (or the volatility spe-
cification) with the lower number of rejections dominates the competitor
when this percentage is below a pre-specified threshold for p. The following
three columns refer to the independence tests, and the next columns come
from the conditional coverage test and the Dynamic Quantile test. The
final three columns aggregate the number of rejections across tests. For
instance, if we take a threshold of .90 for p-dominance, the independence
test of Kupiec rejected 36 models made up with the Normal distribution
and just 7 models with the Student-t distribution. Besides, those 7 models
rejected under the Student-t distribution were also rejected under a Nor-
mal distribution. Hence, the Student-t distribution dominates the Normal
distribution according to this test. The independence test rejected 7 models
made up with either the Normal or the Student-t distributions. In 5 of the 7
rejections under a Student-t distribution for return innovations the model
was also rejected under a Normal distribution. That ratio is 5/7=0.714, so
that we could not conclude that models with a Student-t distribution for
return innovations dominate models with a Normal distribution according
to the independence test.
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Table 20: Dominance between VaR models

The upper panel shows results from tests implemented at 1% significance,
while the lower panel shows results from tests at the 5% significance level.
n1 is the number of tests in which HO is rejected when D1 (M1) is specified as
distribution (volatility model) for the different assets, n2 is the number of tests
in which HO is rejected when D2 (M2) is the probability distribution (volatility
model) for the different assets and p is the proportion of times that HO is re-
jected with both D2 (M2) and D1 (M1). Rows with bold figures show the total

number of tests run.

Confidence level 99% LR, IR, LR, DQT TOTAL
Total number statistics 76 32 32 76 216

D1 — D2 nln2 p nln2 p nln2 p nl n2 p nl n2 p
N— ST 36 7 1 7 7 07142513 1 44 29 1 112 56 0.964
ST — SKST 7 0 1 7 6083313 7 1 29 21 1 56 34 0971
SKST — JSU 00 1 6 4 1 7 4 1 21 21 0.952 34 29 0.966
SKST — SGT 01 0 6 5 1 7 6 1 21 21 0952 34 33 0.939
SGED — SKST 1 0 1 6 6 0833 7 7 0857 22 21 1 36 34 0.941
SGED — JSU 1 0 1 6 4 1 7 4 1 22 21 1 36 29 1
SGED — SGT 11 1 6 5 1 7 6 1 22 21 1 36 33 1
SGT — JSU 1 0 1 5 4 1 6 4 1 21 21 1 33 29 1
GHST — SKST 9 0 1 7 6 0667 9 7 1 24 21 0.762 49 34 0.794
GHST — SGED 9 1 1 7 6 1 9 7 1 24 22 0.727 49 36 0.833
GHST — JSU 9 0 1 7 4 1 9 4 1 24 21 0.714 49 29 0.793
GHST — SGT 9 1 1 7 5 1 9 6 1 24 21 0.714 49 33 0.818
Total number statistics 133 56 56 133 378

M1 — M2 nln2 p nln2 p nln2 p nl n2 p nl n2 p
GARCH — GJRGARCH 10 12 0.833 9 9 0.778 16 12 0917 48 45 0.844 83 78 0.846
GJRGARCH — APARCH 12 14 0.714 9 13 0.615 12 23 0.609 45 46 0.739 78 96 0.688
APARCH — FGARCH 14 18 0.722 13 11 0.818 23 20 0.800 46 43 0.930 96 92 0.848
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Confidence level 95% LR, IR, , LR DQT TOTAL
Total number statistics 76 32 32 76 216

D1 — D2 nln2 p nln2 p nln2 p nl n2 p nl n2 p
N— ST 50 23 0.826 13 13 0.769 32 23 1 52 35 1 147 94 0.926
ST — SKST 23 6 1 1316081323 18 1 35 27 0.963 94 67 0.940
SKST — JSU 6 3 1 16 17 0941 18 17 1 27 25 0.960 67 62 0.968
SKST — SGT 6 6 1 16 16087518 17 1 27 28 0964 67 67 0.955
SGED — SKST 8 6083317 16 1 1818 1 28 27 1 71 67 0985
SGED — JSU 8 3 1 17 17 0941 18 17 1 28 25 1 71 62 0.984
SGED — SGT 8 6 1 1716 1 18 17 1 28 28 0964 71 67 0.985
SGT — JSU 8 3 1 16 17 0.882 17 17 0941 28 25 1 67 62 0.866
GHST — SKST 21 6 0.833 17 16 0.938 19 18 0.944 30 27 0.926 87 67 0.925
GHST — SGED 21 8 0.875 17 17 0.882 19 18 0.944 30 28 0.929 87 71 0.901
GHST — JSU 213 1 17 17 0.882 19 17 0941 30 25 1 87 62 0.952
GHST — SGT 21 6 1 17 16 0.875 19 17 0.941 30 28 0.929 87 67 0.925
Total number statistics 133 56 56 133 378

M1 — M2 nln2 p nln2 p nln2 p nl n2 p nl n2 p
GARCH — GJRGARCH 23 30 0.700 32 30 0.867 40 37 0.865 56 51 0.863 151 148 0.831
GJRGARCH — APARCH 30 33 0.758 30 25 0.960 37 36 0.972 51 59 0.797 148 153 0.856
APARCH — FGARCH 33 31 0968 25 22 095536 32 1 59 59 0915 153 144 0.951

The number of pairwise comparisons between probability distributions
or between volatility specifications is very high because they could be
made in both directions, so we show in Table 20 the more interesting
ones. For instance, we do not explicitly show the comparisons between
the Normal distribution and asymmetric distributions because the latter
always dominate. Similarly, we do not show pairwise comparisons bet-
ween Student-t and any asymmetric distribution other than the skewed
Student-t (SKST) because the skewed Student-t tends to p-dominate the
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standard Student-t, and the majority of asymmetric distributions p-do-
minate in turn the skewed Student-t distribution®®.

Taking into account the aggregate results across the four tests we can
summarize the comparisons at a = 95% as in the Figure 15:

Figure I5: Dominance relationship among probability distributions from aggregate
results across the four tests at a = 95%

Each arrow head points to a model that dominates the model where the arrow
originates. A two-headed arrow indicates two models that do not dominate
each other.

No matter whether we take oo = 99% or a = 959%, the Normal, Student-t,
SKST and SGED distributions are dominated by other alternatives, spe-
cially JSU and SGT. We observe that JSU and SGT distributions seem to
dominate all others, while not being dominated by each other. Accor-
ding to this dominance criterion the GHST distribution is judged again
not to be appropriate for VaR estimation, since it is dominated by the
rest of asymmetric distributions. The Normal distribution is also domi-
nated by all other distributions.

At o = 99% there is not a clear dominance ordering between volatility
specifications. For a = 95% the FGARCH specification seems to domi-
nate but, once again, differences are not as clear as when comparing
probability distributions.

26. Even though p-dominance is not transitive it seems safe to focus on the models that tend to be p-dominant.
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A preference for APARCH and FGARCH models against standard GARCH
and GJRGARCH has been a constant throughout our analysis up to this
point. So, a robust conclusion is the need to incorporate a leverage
effect in volatility and, possibly more important, the convenience to
model standard deviations, rather than variances. The preference for
asymmetric probability distributions in Table 20 is also consistent with
results in Table 19 when comparing p-values of the test statistics. Both
analyses are based on the same information, but they use it in a very
different fashion. Nothing guarantees that the conclusions on the pre-
ferred probability distributions should be the same in both analyses. On
the contrary, this coincidence should be seen as a proof of the robust-
ness of such preference.

2.7.4. Model Confidence Sets

We calculate the values of the AlTick loss function using percent returns
for different models and assets?’. With a few exceptions, including a
leverage effect in volatility reduces the loss function with independence
of the assumption on the probability distribution of innovations. There
is also a noticeable reduction in the value of the loss function when we
move from symmetric to asymmetric distributions. Bold figures in each
column show the VaR model that achieves the lowest value of the loss
function for each asset. It is striking that the probability distributions
that perform well according to other criteria do not do well according to
the criterion of minimizing the loss function?®. Something similar hap-
pens with the APARCH model. This suggests that loss functions should
not be used by themselves. Different loss functions should be expected
to yield different results, and there are not clear criteria to prefer one
function versus another. Besides, we cannot say anything about whether
differences are statistically significant and, sometimes, they are small.
As we have done with the results of backtesting, we prefer to embed the
evaluation of the AlTick loss function into a more complete approach to
model selection that can provide us with some robust evidence on the
performance of alternative VaR models.

27. These values are available from the author upon request.

28. 1In 5 cases, the minimum loss for each asset is achieved by a SGED and the Normal distributions, in 4
cases by SGT, in 3 cases by the GHST distribution and in 1 case by JSU and SKST. The FGARCH model achieves
the minimum loss in 12 cases, the GARCH in 3 cases, APARCH and the GJRGARCH model in 2 cases.
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The availability of several model specifications being able to adequa-
tely describe the unobserved data generating process (DGP) opens
the question of selecting the ’best fitting model’ according to a given
optimality criterion. Recently, significant effort has been placed on
developing testing procedures being able to deliver the 'best fitting’
models among a set of alternatives. One of the first proposals was
Diebold & Mariano (1995), but it is not applicable when the forecasts
come from nested models or when the forecasts are calculated from
semiparametric or non- parametric methods (Giacomini & Komunjer,
2005). This has been overcome by the Reality Check (RC) approach
of White (2000), the Stepwise Multiple Testing procedure of Romano
and Wolf (2005), the Superior Predictive Ability (SPA) test of Han-
sen and Lunde (2005), the Conditional test of Giacomini and White
(2006), and the Model Confidence Set (MCS) procedure developed by
Hansen, Lunde and Nason (2011). All these approaches are relevant
from an empirical point of view, especially when the set of compe-
ting alternatives is large.

We implement the Model Confidence Set (MCS) procedure developed
by Hansen, Lunde and Nason (2011) to discriminate among models. The
MCS is a general approach to model selection that it does not assume
knowledge of the correct specification. Furthermore, it does not require
that the “true” model must be available as one of the competing models.
This approach considers that all models have the same possibility of
being correct and it compares them with each other. Another advantage
of MCS is that it does not discard a model unless it is found to be signi-
ficantly inferior relative to other models®. It is an appealing method to
use when comparing a set of forecasting models because in practice it
often cannot be ruled out that two or more competing models are equa-
lly good, being then members of the Set of Superior Models (SSM). In
this sense, the MCS approach may be preferred over methods that search
for a single model to be selected as the “best model”.

The MCS procedure consists of a sequence of tests to construct the 'Set
of Superior Models’ (SSM). The MCS is a sequential testing procedure
that eliminates at each step the worst model, until the hypothesis of

29. In this respect it is clearly different from the two-stage approach to model selection we described at
the beginning of this Section.
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Equal Predictive Ability (EPA) is not rejected for any of the models in
the current SSM. On the other hand, each element in the SSM is cha-
racterized as having better predictive ability than models not in the set.
The SSM has an interpretation similar to a confidence interval for a
parameter in the sense that, with a given level of confidence, the SSM
contains the best model. The EPA test statistic is evaluated under a gi-
ven loss function, so that it is possible to test models on various aspects
depending on the chosen loss function. The possibility of user supplied
loss functions provides enough flexibility to the procedure that can be
used to test competing models with respect to different dimensions. This
is in common with Diebold & Mariano (1995), although we are here
somewhat more specific in comparing whether the number and size of
VaR violations are different across models. We apply the EPA tests using
the AlTick loss function, not just the difference between observed and
predicted returns, but results with other functions might be different.

Formally, the loss function ¢;, associated to the i-th model ¢;, = #(Y,,¥;,)
measures the cost associated to the difference between the observation
at time t, Y, and Y, the output of model i at time . The MCS procedu-
re starts from an initial set of models M, of dimension m made up by
all combinations of probability distributions and volatility specification
considered in previous sections. Then, for a given confidence level 1—a,
we obtain a smaller set, the superior set of models, SSM, Mi“_a of dimen-
sion m* < m. Let us denote by d,; the loss differential between models i
and J,

dij'tzfi_t—fj’t i,j=1,...,m, t:].,...,T

The EPA hypothesis for a given set of models M can be formulated:

Hom:cij =0, forall i,j=1,..,m

Hypy:ciy # 0, forsome i,j=1,..,m
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where ¢;; = E(d;;) is assumed to be finite and not time dependent. This
hypothesis can be tested using the test statistic [Hansen et al. (2011)],

d.:
tj =—=—— fori,jEM

’vﬁr(czij)

where cfl-j =n"1ynr, d;;+ measures the relative sample loss between
the i-th and j-th models, with var(d;;) is a bootstrapped estimate of
var(d;;). Following Hansen et al. (2011) we calculate the bootstrapped
variances by a block-bootstrap procedure. The block-bootstrap is the
most general method to improve the accuracy of bootstrap for time
series data. By dividing the data into several blocks, it can preserve the
original time series dependency structure within a block. To that end,
we divide the full time series (1260 data observations) into overlapping
blocks of length k. The accuracy of the block- bootstrap is sensitive to
the choice of block length, and the optimal block length depends on the
sample size, the data generating process, and the statistic considered*°.
The block length p is usually estimated as the maximum number of
significant parameters obtained by fitting an AR(p) process to all the
dij terms. Since financial returns exhibit little linear autocorrelation, an
AR(1) is enough to capture the dependence structure, so that we take
p = 1 and resample individual observations. Using a block length of 2
would not change significantly the characterization of the MCS.

As discussed in Hansen et al. (2011) the EPA null hypothesis maps natu-
rally into the statistic,

Ty = {}}gﬁltijl

30. See Goncalves and White (2004, 2005), Kiinsch (1989), Liu and Singh (1992), and Politis and Romano
(1994). Details about the implemented bootstrap procedure can be found in White (2000), Kilian (1999),
Clark and McCracken (2001), Hansen et al. (2003), Hansen and Lunde (2005), Hansen et al. (2011) and
Bernardi et al. (2016).
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Since the asymptotic distributions of this test statistic is nonstandard,
the relevant distribution under the null hypothesis needs to be esti-
mated using a bootstrap procedure similar to that used to estimate
var(dij).

Table 21 reports the frequency by which each probability distribution
and each volatility specification enter into the Superior Set of Models
for each asset using the AlTick loss function®'. Tests are performed at
the 90% confidence level, using a block-bootstrap procedure of 10000
resamples with a block length of 1. The table shows that for some
assets, like NASDAQ 100, FTSE 100, EUR/SD and JPY/USD, the SSM
includes a variety of distributions and volatility specifications. That
indicates that the one-step ahead 1% VaR forecasting performance of
the competing combinations of probability distribution and volatility
specification is relatively similar, suggesting that for these assets the
use of simple models for VaR forecasting may be justified.

The SGT, JSU, SGED and GHST distributions are the ones that enter
most often into the MCS of the set of assets considered. Among the
volatility models, FGARCH and APARCH seem to describe quite well
the behavior of financial time series, although the symmetric GARCH
also enters into the MCS quite often. Concerning the distribution spe-
cifications, we observe that the MCS confirms the common finding that
the Normal distribution provides a poor description of the behavior of
financial time series. Under the AlTick loss, the skewed Generalized-t
and skewed Generalized Error distributions perform better than the Ge-
neralized Hyperbolic skew Student-t. Definitely, the Normal, Student-t
and skewed Student-t distributions do not seem to be appropriate for
VaR forecasting, at least for the wide set of financial assets considered
in this chapter.

31. We believe that the opportunity cost of overestimating VaR is non-trivial. The AlTick loss function
not only penalizes underestimation but also risk overestimation, because of the excess capital retained, and
therefore we prefer it over other loss functions, such as those proposed by Lopez (1998, 1999) and Sarma et
al. (2003) which only penalize risk underestimation. However, it would be worthwhile to explore other loss
functions that might focus on different characteristics of VaR forecasts.
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Table 21: Number of times that each probability distribution and volatility
model enter into the Superior Set of models for each asset

Bold figures in the last column of the lower panel are aggregates for each proba-
bility distribution or volatility model. Bold figures in the last row of each panel
display aggregates for each asset.

AlTick IBEX NASDAQ FTSE NIKKEI IBM SAN AXA BP IRS B((})I;:\Il;
Models
GARCH 0 0 0 0 1 0 0 0 1 2
GJRGARCH 0 2 2 1 0 0 0 0 0 0
APARCH 2 5 5 0 0 0 0 2 0 0
FGARCH 3 4 3 2 0 1 1 0 0 3
Distributions
N 0 0 0 0 0 0 0 1 0 0
ST 0 1 0 0 0 0 0 0 0 0
SKST 0 2 2 0 0 0 0 0 0 0
SGED 2 2 2 2 1 0 1 1 0 1
JSU 0 2 3 0 0 1 0 0 0 2
SGT 2 3 3 1 0 0 0 0 1 1
GHST 1 1 0 0 0 0 0 0 0 1
Total Number 5 1 10 3 1 1 1 2 1 5
. Us EUR/ GBP/ JPY/ AUD
AlTick BOND BRENT GAS GOLD SILVER U SD/ U SD/ U SD/ U SD/ TOTAL
Models
GARCH 6 0 0 1 4 2 0 3 0 20
GJRGARCH 0 0 0 0 1 2 1 0 0 9
APARCH 0 0 0 0 0 2 0 4 2 22
FGARCH 1 1 1 0 1 6 0 4 1 32
Distributions
N 0 1 1 0 0 0 1 0 2 6
ST 1 0 0 0 0 2 0 3 1 8
SKST 1 0 0 0 1 1 0 0 0 7
SGED 1 0 0 0 0 1 0 3 0 17
JSU 1 0 0 0 2 1 0 0 0 12
SGT 1 0 0 0 1 4 0 3 0 20
GHST 2 0 0 1 2 3 0 2 0 13
Total Number 7 1 1 1 6 12 1 11 3
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2.8. Conclusions

This chapter extends previous work on the forecasting performance of
alternative VaR models by considering four volatility specifications:
GARCH, GJR-GARCH, APARCH and FGARCH and a set of asymmetric
probability distributions: skewed Student-t, skewed Generalized Error,
unbounded Johnson, skewed Generalized-t and Generalized Hyperbolic
skew Student-t distributions, some of them being relatively new to the
financial literature. Standard symmetric distributions and GARCH mo-
dels without leverage are also used as a benchmark. Our sample of daily
data for assets of different nature for the January 2000-December 2015
period covers the recent financial crisis of 2007-20009.

Two clear results refer to issues that have been analyzed in previous re-
search by a number of authors: i) VaR models that assume asymmetric
probability distributions for return innovations, like the skewed Student-t
distribution, skewed Generalized Error distribution, Johnson SU distri-
bution, and skewed Generalized-t distribution achieve better VaR per-
formance than models with symmetric distributions, ii) volatility models
with leverage, like APARCH and FGARCH, show a better VaR performance
than more standard GARCH and GJR-GARCH volatility specifications.

Our analysis highlights other important issues. A third result is that the
shape and the skew of the assumed probability distribution for innova-
tions are even more important for the performance of a Value at Risk mo-
del than including a leverage effect in volatility. This corroborates results
by other authors (Lopez and Walter, 2000, Angelidis and Degiannakis,
2006 and Braione and Scholtes, 2016). We provide a thorough analysis of
this issue by showing that the result holds for the wide set of assets we
have considered: i) the frequency of rejections of VaR tests in models that
differ in their volatility specification is similar, while rejection frequen-
cies among models with the same volatility specification but a different
probability distribution for the innovations can differ very significantly,
ii) changing the probability distribution in a VaR model affects the p-
value of the statistic for VaR tests by a larger amount than changing the
volatility specification, iii) the dominance criterion we have introduced in
this chapter establishes a clear ranking between models differing in their
probability distribution, while the distinction between models that differ
in their volatility specification is much less clear.
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A fourth result deals with the fact that our estimates suggest that for
a number of financial assets the true, unobserved volatility dynamics
should not be specified in terms of the squared conditional standard
deviation. Hence, models specified for the conditional variance are pro-
ne to produce biased results. Dealing with the power of the conditional
standard deviation as a free parameter is an important feature of the
APARCH/FGARCH volatility specifications which explains their better
performance in validation tests of VaR forecasts.

Fifth, our analysis suggests that, as expected, a good fit of the moments
of the distribution of returns usually leads to a good VaR performan-
ce. The MAE calculated over estimates for the four first moments se-
lects the combination of a skewed Generalized Error distribution and an
APARCH/FGARCH volatility specification as the best model to reprodu-
ce the skewness and kurtosis in asset returns.

According to VaR performance, switching to a Johnson SU or a skewed
Generalized-t distribution tends to increase the p-value of VaR validation
tests. In terms of the dominance criterion among VaR models we have
introduced in this chapter, the unbounded Johnson and skewed Generali-
zed-t dominate other asymmetric distributions like the skewed Student-t,
the Generalized Hyperbolic skew Student-t and the skewed Generalized
error distribution, as well as the symmetric distributions like Student-t
and Normal. The skewed Generalized-t and skewed Generalized Error dis-
tributions perform better than the other distributions in terms of the Mo-
del Confidence Set procedure. According to all these analyses, FGARCH
seems the preferred model to capture the volatility of financial time se-
ries, with APARCH as a close second. In summary, the combination of
APARCH or FGARCH volatility with a skewed Generalized Error, skewed
Generalized-t or unbounded Johnson SU distributions seem to be have
the best VaR performance for a wide array of assets of different nature.

This evidence has been obtained trying to get broad and robust con-
clusions over the set of assets considered. But it could be the case that
alternative VaR models provided different VaR performance for distinct
asset classes. We have just a few assets of each class, which may explain
the disparate results that are likely to arise if we repeat the analysis in the
chapter by asset classes in our sample. But this is clearly an important
issue that deserves being considered for further research.
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CHAPTER 3. TESTING €S ESTIMATION MODELS: AN
EXTREME VALUE THEORY APPROACH

3.1. Introduction

The Basel Committee on Banking Supervision (BIS) has recently chose
Expected Shortfall (ES) as the market risk measure to be used for ban-
king regulation purposes, replacing Value at Risk (VaR). The change is
motivated by the superior properties of ES as a measure of risk, since it
is based on information on the whole tail of the distribution of returns.
The main drawback with the use of ES for risk regulation is the unavai-
lability of simple tools for evaluation of ES forecasts (i.e. backtesting ES).
In fact, the Basel Committee backed down on requiring the backtesting
of ES. A debate started by Gneiting led many to believe that ES could
not be backtested because it was not “elicitable”. That point was settled
recently by Fissler, Ziegel and Gneiting (2015) and by Acerbi and Szekely
(2014), who demonstrated that lack of elicitability is not an impediment to
backtesting ES. The latest Basel consultative document of January 2016,
however, proposed to calculate risk and capital using ES, but to conduct
backtesting only on VaR. VaR backtests are applied comparing whether
the observed percentage of outcomes covered by the risk measure is
consistent with the intended level of coverage. However, it is important
that the capital reserve indicated by the VaR calculation could be tested,
and the hypothesis that the level of reserves is adequate could be subject
to a valid statistical test.

There is not much work evaluating and comparing the performance of ES
forecasting models using recently introduced ES backtesting. Alexander
and Sheedy (2008) develop a two-stage methodology for conducting stress
tests whereby an initial shock event is linked to the probability of its oc-
currence. Working with three major currency pairs they found that results
compared favorably with the traditional historical scenario stress testing
approach. Jalal and Rockinger (2008) use a circular block bootstrap to take
adequately into account the possible dependency among exceedances.
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Applying the two-step procedure of McNeil and Frey (2000), they found
that ES forecasts captured actual shortfalls satisfactorily. Ergiin and Jun
(2010) show that the Autoregressive Conditional Density (ARCD) model
of Hansen (1994) with a time-varying conditional skewness parameter
seems to provide more ES forecasts, beating forecasts from other GARCH-
based models as well as from the extreme value theory (EVT) approach.
Wong et al. (2012) compare ES forecasting models using the saddlepoint
backtest proposed by Wong (2008). Righi and Ceretta (2015) evaluate un-
conditional, conditional and quantile/expectile regression-based models
for ES forecasting using the ES backtest proposed by McNeil and Frey
(2000) and a proposed test based on the standard deviation of returns
beyond VaR. Clift, Costanzino and Curran (2016) apply three approaches
recently proposed in the literature for backtesting ES by Wong (2008),
Acerbi & Szekely (2014) and Costanzino & Curran (2015), but they only
consider a GARCH volatility specification and a Normal distribution for
ES forecasting. In these papers there is some indication on the benefits of
using asymmetric probability distributions and EVT for ES forecasting*.

We estimate VaR and ES at 1-day and 10-day horizons using standard
conditional models as well as an EVT approach. For the latter, we use
the two-step algorithm proposed by McNeil and Frey (2000) that fits a
Generalized Pareto distribution to the extreme values of the standardi-
zed residuals generated by a given conditional volatility model. In both
analysis we use asymmetric probability distributions for return innova-
tions that are relatively new to the financial literature, and we analy-
ze the accuracy of our estimates before and during the 2008 financial
crisis using daily data. We take into account volatility clustering and
leverage effects in return volatility by using the APARCH model (Ding,
Granger and Engle, 1993) under different probability distributions for
the standardized innovations: Gaussian, Student-t, skewed Student-t
[Fernandez and Steel (1998)], skewed Generalized Error [Fernandez and
Steel (1998)] and Johnson S, [Johnson (1949)]. Then, we compare the
out-of-sample 1-day and 10-day ahead ES forecast performance of all
these models. For ES evaluation, we use the most recent ES backtesting
proposals, which overcome the limitations of previous tests [McNeil &

32. Other studies have VaR as their primary measure of interest, leaving ES to a second level, such as Zhou
(2012), Degiannakis, Floros and Dent (2013) and Tolikas (2014), where no extensive focus is placed on ES
forecasting patterns.
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Frey (2000), Berkowitz (2001), Kerkhof and Melenberg (2004) and Wong
(2008)]. These are the test of Righi & Ceretta (2013), the first two tests
of Acerbi € Szekely (2014) that are straightforward but require simula-
tion analysis (as the Righi & Ceretta test) to compute critical values and
p-values, the test of Graham €& Pal (2014) which is an extension of the
Lugannani-Rice approach of Wong (2008), the quantile- space uncon-
ditional coverage test of Costanzino & Curran (2015) for the family of
Spectral Risk Measures of which ES is a member, and the conditional
test of Du & Escanciano (2016). The last two tests can be thought of as
the continuous limit of the Emmer, Kratz & Tasche (2015) idea in that
they are joint tests of a continuum of VaR levels.

EVT has rarely been implemented beyond a one-day horizon when fo-
recasting the ES of financial assets, even though there are several eco-
nomic and practical reasons for computing long-term risk measures.
Risk horizons longer than one day are particularly important for risk
liquidity management, for long term strategic asset allocation as well as
to compute capital requirements. Besides, the Basel Committee obliges
banks to compute their level of risk over a 10-day horizon. The difficul-
ty resides in getting enough homogeneous data on 10-day returns over
non-overlapping periods. That explains the extended use of the scaling
law, whose use is also proposed in the Basel Committee supervision do-
cuments. We get around this limitation by using Filtered Historical Si-
mulation (FHS) to obtain time series of 10-day returns and we estimate
10-day ES by applying the same methodologies as for 1-day ahead ES
forecasting.

To sum up, this work contributes to the literature in four ways. First,
we compare the performance of the standard parametric approach with
two alternatives to ES forecasting that take into account volatility clus-
tering and asymmetric returns: EVT and the semi- parametric Filtered
Historical Simulation. Second, we compare the results obtained under
asymmetric probability distributions for return innovations with results
under Normal and Student-t distributions. Third, we use the APARCH
volatility specification because of its greater flexibility to represent the
dynamics of conditional volatility (Garcia-Jorcano and Novales, 2017).
Fourth, we forecast VaR and ES over a 10-day horizon as in Basel capital
requirements and test ES forecasting models at this horizon, an analysis
that has seldom been considered in the financial literature. Finally, we
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examine the accuracy of risk models for ES forecasting during pre-crisis
and crisis periods as well as under different significance levels. To the
best of our knowledge, this is the first time that a systematic test of ES
forecasting models is done considering a variety of probability distribu-
tions and two alternatives to the standard parametric approach, like EVT
and the semi-parametric FHS.

3.2. Review of Literature

The quantiles of the distribution of returns (VaR) can be estimated by
extreme value theory (EVT), which models the tails of the distribution of
returns without making any specific assumption concerning the center
of the distribution (Rocco, 2014). The tail index parameter in EVT can
be estimated nonparametrically without assuming any particular model
for the tail. There are many estimators that can be used to accomplish
this task, such as Hill estimator (Hill, 1975) and Pickands estimator (Pic-
kands, 1975).

For the estimation of the tail index parameters in EVT there are also two
parametric approaches based on classical methods such as maximum
likelihood. The first parametric approach is Block Maxima (BM) based
on the Generalized Extreme Value (GEV), which divides the sample into
m subsamples of n observations each and picks the maximum of each
subsample; see for example Longin (2000), Diebold, Schuermann and
Stroughair (2000). The second EVT parametric approach is the Peak Over
Threshold (POT) based on the Generalized Pareto Distribution, according
to which any observations that exceed a given high threshold, u, are
modeled separately from non-extreme observations. McNeil and Frey
(2000) show that the EVT method based on the Generalized Pareto dis-
tribution yields quantile estimates that are more stable than those from
the Hill estimator. When working with threshold exceedances the choice
of cut-off between the central part of the distribution and the tails may
have severe consequences for risk estimates. If the threshold is chosen
too low VaR forecasts will be biased and the asymptotic limit theorems
will not apply. If the threshold is too large VaR forecasts will have large
standard deviations due to the limited number of sample observations
over the threshold.
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An alternative to the unconditional approach is to calculate the condi-
tional quantile. Under a parametric approach, the usual option to esti-
mate the conditional quantile is assuming a particular distribution for
return innovations. The most popular parametric distribution for stan-
dardized returns is Gaussian and Student-t distributions, and the Skewed
Student-t distribution of Hansen (1994). An alternative leptokurtic and
asymmetric distribution that has been considered in this context is
the Skewed-Generalized-t (SGT) distribution proposed by Theodossiou
(1998). The SGT distribution has the attractive feature of encompassing
most of the distributions that are usually assumed for standardized re-
turns, such as Gaussian, Generalized Error Distribution (GED), Student-t
and Skewed Student-t distributions, for example. Recently, Ergen (2015)
has considered the Skewed-t distribution proposed by Azzalini and Ca-
pitanio (2003) and Aas and Haff (2006) propose the use of the Gene-
ralized Hyperbolic Skew Student-t distribution for unconditional and
conditional VaR forecasting.

Another possibility is to estimate the conditional quantile using the EVT
approach. Danielsson and de Vries (2000) and McNeil and Frey (2000)
suggest estimating the quantiles of return innovations by applying EVT
to the standardized returns, which are i.i.d. if the conditional mean and
variance are specified correctly. Chan and Gray (2006) introduce a des-
cription of the conditional EVT and its application to the forecasting of
the VaR of daily electricity prices. McNeil and Frey (2000) propose fil-
tering returns by estimating a GARCH model, then applying EVT to the
tails of the empirical distribution of innovations while bootstrapping to
the central part of the distribution. They verify that the General Pareto
distribution of EVT results in better estimates for ES than the Gaussian
model. Jalal and Rockinger (2008) show that this procedure appears to
perform a remarkable job when combined with a well-chosen threshold
estimation, such as that in Gonzalo and Olmo (2004).

Following non-parametric methods, innovation quantiles can be estima-
ted using bootstrapping, which does not need to assume any particular
probability distribution (Ruiz and Pascual, 2002). In particular, Barou
ne-Adesi, Giannopoulus and Vosper (1999, 2002) propose a bootstrap
method known as filtered historical simulation (FHS), which is based on
the idea of using random draws with replacement from the standardi-
zed residuals. Bootstrap procedures have the advantage that they allow
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for the construction of confidence intervals for VaR estimates. Pascual,
Ruiz and Romo (2006) propose a bootstrap procedure that allows for the
incorporation of parameter uncertainty. Kourouma et al. (2011) compare
unconditional and conditional historical simulation and EVT in VaR
and ES forecasting. They conclude that conditional EVT model is more
accurate and reliable for VaR forecasting, according to the rate of viola-
tions and Wald, Kupiec and Christoffersen tests, and for ES forecasting,
according to an ES test proposed by them that is based on the average
difference between realized returns and the predicted ES.

As regards ES, in spite of its advantages as a measure of risk it is still
less used than VaR. However, the Basel committee (2016) has recently
placed a stronger emphasis on ES and backtesting ES is clearly in the
future agenda for capital requirements at financial institutions. The pro-
blem is that backtesting ES is much harder than backtesting VaR.

Recently, some ES backtesting procedures have been developed, like the
residual approach introduced by McNeil and Frey (2000), the censored
Gaussian approach proposed by Berkowitz (2001), the functional delta
approach of Kerkhof and Melenberg (2004), and the saddlepoint techni-
que introduced by Wong (2008). While Berkowitz’s censored Gaussian
approach and Kerkhof & Melenberg’s functional delta method rely on
large samples for convergence to the required limiting distributions, the
saddlepoint techniques proposed by Wong are accurate and have re-
asonable test power even if the sample size is small. The saddlepoint
technique makes use of a small sample asymptotic method that involves
higher order moments of the underlying distribution and is able to ap-
proximate to a very high degree of accuracy the required tail probability
even for very small sample sizes. But this test has a few disadvantages,
such as the Gaussian distribution assumption and the full distribution
conditional standard deviation that is used as the dispersion measure.

However, these approaches present some drawbacks. The backtest of
McNeil and Frey (2000), Berkowitz (2001) and Kerkhof and Melenberg
(2004) rely on asymptotic test statistics that might be inaccurate when
the sample size is small, and this could penalize financial institutions
because of an incorrect forecasting of ES. Further, these tests compute
the required p-value based on the full sample size rather than conditio-
nal on the number of exceptions. The test proposed by Wong (2008) is
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robust to these questions, making it possible to detect failure of a risk
model based on just one or two exceptions before any more data is ob-
served. Nonetheless, the Wong (2008) backtest has some disadvantages,
such as the Gaussian distribution assumption, and the use of the full
distribution conditional standard deviation as a dispersion measure.

To overcome these limitations, Emmer, Kratz & Tasche (2015) propose
a new ES backtest based on a simple linear approximation, in which
the ES estimate is obtained as the average of quantiles at different VaR
levels. The ES estimate is considered acceptable if all the VaR estima-
tes pass Kupiec test. Also, the test proposed by Righi & Ceretta (2013)
verifies whether the average observed deviations from the ES for those
returns below VaR is zero. In this test returns are standardized using the
mean and standard deviation from the distribution of returns trunca-
ted to the left of VaR. Later, Acerbi & Szekely (2014) introduced three
model-free, non-parametric backtesting methodologies for ES that are
shown to be more powerful than the Basel VaR test. Graham & Pal
(2014) generalized Wong’s result in a tractable and intuitive manner
to allow for any VaR modeling, and therefore distributional, approach.
Costanzino & Curran (2015) developed a methodology that can be used
to backtest any spectral risk measure, including ES. It is based on the
idea that ES is an average of a continuum of VaR levels. They introduce
an unconditional ES backtest similar to the unconditional VaR backtest
of Kupiec, to test whether the average cumulative violation is equal to
a/2. Later, Du & Escanciano (2016) proposed backtesting for ES based on
cumulative violations, which are the natural analogue of the commonly
used conditional backtest for VaR, extending the results obtained by
Costanzino & Curran (2015).

Several papers have considered a comparison between alternative ES
forecasting models: Kourouma et al. (2011) introduce a validation test
for ES models and use it to compare unconditional and conditional ES
forecasting models at 1-, 5- and 10-day horizons. As conditional model
they specify a GJR-GARCH under a Normal distribution for return in-
novations. Wong et al. (2012) compare conditional models with GARCH
and APARCH volatility specifications and Normal, Student-t, skew Stu-
dent-t and EVT combined with a Normal distribution using the ES va-
lidation tests introduced in Wong (2008, 2010). Righi & Ceretta (2015)
analyze a much richer variety of alternative models and methods for ES
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forecasting using the McNeil & Frey (2000) test and the Righi & Ceretta
(2015) test. Clift et al. (2016) consider the Wong test (2010), Costanzino
& Curran test (2015) and Acerbi & Szekely tests (2014) but use simple
specifications as illustration: a constant volatility model and a GARCH
model under Normality.

We use five different approaches for evaluation of ES estimates, with six
methods overall. The test of Righi € Ceretta (2015) and the first two tests
of Acerbi & Szekely (2014) are straightforward, but require simulations,
the test of Graham & Pal (2014), which is an extension of the Lugan-
nani-Rice approach of Wong (2010), the quantile-space unconditional
coverage test of Costanzino € Curran (2015) for the family of Spectral
Risk Measures, of which ES is a member and, finally, the conditional test
of Du €& Escanciano (2016). The last two tests can be thought of as the
continuous limit of the Emmer, Kratz & Tasche (2015) idea in that it is a
joint test of a continuum of VaR levels.

3.3. Background

3.3.1. Standard Risk Measures

Value at Risk (VaR) is a simple risk measure that tells us what loss will
be exceeded only a small percentage of times in the next & trading days
(100a%). Thus, given the log-return r,,, of a portfolio in period z+4, VaR
at a level a is defined as Pr(r;,x < VaRf,,) = a. For simplicity, let us
assume at we are predicting the VaR at some level a for 1-day ahead re-
turns, 741 = Wee1 + Or41Ze41 Where Heyq is the conditional mean return
in period t + 1, 01, is the conditional variance and Z¢+1 represents
the white noise time series of return innovations, which will follow
a given probability distribution. From the VaRf,; definition we have,
Pr(ziy; < (VaR{y; — H41)/0e41) = @, which amounts to F((VaRZ, —
Me+1)/0t41) = @, or

VaR{,1 = Hey1 + 0py F7H (@) (6)

where F denotes the probability distribution function of return innova-
tions z,. Given the drawbacks of VaR as a risk measure, it is convenient
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to compute the ES, which accounts for the magnitude of large losses
as well as their occurring probability. The ES is defined from VaR as
ESZk = Epyrlrearlresr <VaRf,,] and tells us the expected value of
the loss k-days ahead, conditional on it being worse than the VaR.
As VaR is usually negative for low a values, the expectation of re-
turns below VaR will also be negative. For the 1-day ahead ES we have
ESf1 = Epyalresa|ress <VaR{f ] =Hesa + Or+1Er41(Ze4112e41 < (VaRE

— U¢+1)/0¢+1]. Finally, using (6) we get,
ESta+1 = Hey1 + Or1EriqlZep112e4 < F7H ()] (7)

If we assume the existence of an absolutely continuous cdf F, ES is de-
fined as

a

1 Fl(a)
Ees1lze1l2e00 < FH@)] = E—[ F='(s)ds = Ej rf(r)dr

0

3.3.2. Estimating risk: Conditional models for the full distribution

We now define VaR and ES in conditional models. For that purpose, we
consider that R is a stationary process with a fully parametric location-
scale specification based on the expectation, dispersion and random
components: r, = u, + o,z, where for period ¢, r, is the return of an
asset, u, is the conditional mean (location), o, the conditional standard
deviation (scale) and z, represents a zero location and unit scale innova-
tion white noise series, which can assume many probability distribution
functions F. Under this specification, the risk measures become,

VaR¥ = y; + o.F 1(a)

1 a
0

SDE = UE%J: (F‘l(s) - <%J:F‘1(s)ds)) ds

1/2

119



120

Laura Garcia Jorcano

The SD measure in the last expression is the dispersion around the ex-
pected value truncated by the VaR. This will be considered for ES bac-
ktesting of Righi & Ceretta.

3.3.3. Estimating risk: Conditional models for extreme events

The alternative approach is to consider only extreme events, preci-
sely those captured by risk measures. In this regard, the Extreme Value
Theory (EVT) is concerned with the distribution of the smallest order
statistics and it considers only the tail of the distribution of returns.
For further reference, see Longin (2005). Although EVT is interesting for
risk modeling, the stylized facts make the iid assumption inappropriate
for most financial data. To solve this issue, one should apply the EVT
analysis to the filtered residuals z, of a previously estimated model, as
proposed by Diebold, Schuermann and Stroughair (2000) and McNeil
and Frey (2000). This is possible because under a correct model speci-
fication, the filtered residuals will be approximately iid, an assumption
of EVT modeling.

Under the EVT approach, VaR and ES are modeled using the concept of
threshold exceedance. The peaks-over-threshold (POT) models develo-
ped around this concept center on the analysis of the Generalized Pareto
distribution, which may be understood as a limiting tail distribution for
a wide variety of commonly studied continuous distributions. The POT
is the typical approach used in finance. Under the iid assumption, let us
consider the distribution function of excesses Y = u - Z over a high, fixed
threshold u, F,(y) = P(Y=u—-Z<y|lZ<u) = [Fw)—-F@u-y)]/
[F(w)],y = 0. Pickands (1975) shows that the Generalized Pareto dis-
tribution (GPD) arises naturally as the limit distribution of the scaled
excesses of identical and independently distributed (iid) random varia-
bles over high thresholds. We say that excesses from a given threshold
follow a General Pareto distribution ¥ =u—Z ~ GPD(¢, ) if

33. Notice that we focus on the lower tail of the data, and we have adapted all formulations accordingly.
The choice of u is subject to a trade-off: very high u leads to an estimator with large variance, while low u
induces bias. The choice of u is the most important implementation issue.
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1

Ey\ €
F,.(y) ~ GPDg 4() = _<1+Fy> 40
1—exp<—%>, &E=0

GPDg g(y) has support y 2 0if¢=0and0 <y < —B/§if§ <0 where
f >0 is a scale parameter and ¢ is the tail shape parameter, which
is crucial because it governs the tail behavior of GPD¢g(y). The case
& > 0 corresponds to heavy-tailed distributions whose tails decay like
power functions, such as Pareto, Student-t, Cauchy, Burr, loggamma and
Fréchet distributions. In this case, the tail index parameter equal to 1/¢
corresponds to, for example, the degrees of freedom of the Student-t
distribution. The case ¢ = 0 corresponds to distributions like Normal,
exponential, gamma and lognormal, whose tails essentially decay expo-
nentially. The final group of distributions are short-tailed distributions
(¢ < 0) with a finite right endpoint, such as the uniform and beta dis-
tributions.

The implied assumption is that the tail of the underlying distribution
begins at the threshold u. From our sample of T data a random number
T, will exceed this threshold. If we assume that the T, excesses over the
threshold are iid with exact GPD distribution, Smith (1987) has shown
that maximum likelihood estimates € = &y and [3’ = ﬁN of the GPD pa-
rameters ¢ and [ are consistent and asymptotically normal as T,, = oo,
provided ¢ > —1/2. Under the weaker assumption that the excesses are
iid from a F,(y) which is only approximately GPD he also obtains as-
ymptotic normality results for & and £.

Consider now the following equality for points z < u in the left tail of F:

F(z) =F(w) - F,(u—-2FW =FwW(1 - F,{u - 2))

If we estimate the first term on the right-hand side of the equation using
the proportion of tail data T,/T, and if we estimate the second term by
approximating the excess distribution with a generalized Pareto distri-
bution fitted by maximum likelihood, we get the tail estimator

2l
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Fy(z) = T?(l + é”;Z)_l/E

It is very important to note that the distribution F of the conditional mo-
del and the distribution GPD, for {z} over threshold u are not linked.
Thus, it is possible to use any conditional model to filter the data before
applying EVT to z, . In our analysis we assume a variety of asymmetric
distributions for F that give rise to different conditional EVT estimates.
Under the EVT approach, the risk measures are obtained,

2i- (T:;T)_gD

§

VaRf = u; + oy <u +

| Fil
ES;X = u; + o <Ef Fz,_ul(s)ds> = He t Ut( ]: _(z) B <B1-I;i;u>>
0

5 1/2
1« 1«
SDf = atzaf Fi(s) — <EJ F;J(s)ds) ds
0 0

Summarizing, McNeil & Frey proceed as follows: In the first step, they
filter the dependence in the time series of returns by computing the re-
sidual of a GARCH-type model, which should be iid if the GARCH-type
model correctly fits the data. In the second step, they model the extreme
behavior of the residual using the tail approach explained above. Fi-
nally, in order to produce a VaR forecast of original returns, they trace
back the steps by first producing the a-quantile forecast for the GARCH-
type filtered residuals and transforming the a-quantile forecast for the
original returns using the conditional forecast at the required horizon.

It is worth emphasizing that the GARCH-EVT approach incorporates
the two ingredients required for an accurate evaluation of the condi-
tional VaR, i.e. a model for the dynamics of the first and second return
moments, and an appropriate model for the conditional distribution
of returns. An obvious improvement of this approach as compared to
the unconditional EVT is that incorporates in VaR forecasting changes
in expected return and volatility. For instance, if we assume a change in
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volatility over the recent period, the GARCH-EVT is able to incorporate
this new feature in its VaR evaluation, whereas the unconditional EVT
would remain stuck at the average level of volatility over the estimation
sample.

McNeil € Frey (2000) also perform a backtesting experiment in which
they compare the performance of various methods to correctly repro-
duce the quantiles of several asset returns. They show that the GARCH-
EVT performs much better than unconditional EVT, suggesting that the
ability to capture changes in volatility is crucial for VaR computation.

3.3.4. Estimating risk: Filtered Historical Simulation

The standard historical approach is often limited to the 1-day horizon
because of the lack of enough historical data to use non-overlapping
h-day returns. Using overlapping h-day returns would distort the tail
behavior of the return distributions leading to significant error in VaR
and ES forecasts at extreme quantiles. An alternative for VaR and ES
forecastings at risk horizons longer than one-day is Filtered Historical
Simulation (FHS). Barone-Adesi et al. (1998, 1999) extend the idea of
volatility adjustment to multi-step historical simulation, using overlap-
ping data in a way that does not create blunt tails for the h-day port-
folio return distribution. Their idea is to apply a statistical bootstrap to
the residuals of a parametric dynamic model of returns, to simulate log
returns on each day over the risk horizon. Typically, the model will in-
corporate a specification of the GARCH family for volatility dynamics.
The filtering involved in the FHS approach allows for h-day return dis-
tributions to be generated from overlapping samples, since the bootstrap
allows for increasing the number of observations used for building the
h-day return distribution.

FHS is in fact a hybrid method combining some attractive features of
both historical and Monte Carlo VaR models. The advantages of FHS
approach are 1) it captures current market conditions by means of the
volatility dynamics, 2) no assumptions need to be made on the dis-
tribution of the return innovations and 3) the method allows for the
computation of any risk measure at any investment horizon of interest
because we can generate as many h-day returns as we like.

23
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Suppose that at a time s, we want to simulate returns for the next h
days. We select {Zs+1 Z542, .-, Zs+n} at random with replacement (sta-
tistical bootstrap) from the set of standardized innovations from
our model {Z1,Z,...,%Zs} after filtering out APARCH and AR mo-
dels. We use the APARCH model to simulate future returns for dates
t=s+1,s+2,...,s+ h:

L S (8)
of = (@ + a(lef_4| — )’/\15:—1)6 + [31(01,:6—1)6)1/(S
g;‘ = Z:O'; [9)

7= Po + i1y + & (10)

The algorithm contains the following steps,

(i) Select {z511Z5i2, .-, Z54n} drawing randomly with replacement
from {2,,2,, ..., 2¢}.

(ii) Take as initial values the last estimates: 0s = Gs, & = &, 1% =13,
(iii) Setupfort=s+1,5s+2,...,s+h,

¢ Plug o/ , and &;_; in equation (8) to get of.

¢ Plug z; (from step (i)) and o7 in equation (9) to get &.

o Plug r;_; and & in equation (10) to get ;" .

o Then the simulated log return over h days (75.,) is the sum
Torr t g2+ + 75y

(iv) Repeating this procedure N times yields N simulated h-day re-
turns, 7isp =1,2,...,N,

We compute h-day ahead VaR and ES forecasts as

VaRg, = Percentile{r;s,,i = 1,...,N;100a}

N
ESSth = (Na)_l Z (rifs:hﬂ{r{js:h<VaRg:h})

=1
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where 1 is the indicator function that assumes value 1 if the h-day
return 7. is lower than VaR and 0 otherwise. Thus, the ES is just the
mean of the simulated returns below VaR. Finally,

1/2

N
SDép = {(Na)_l z [(rifs:hﬂ{rifs:h<VaR§fh}) - ESsofh]

i=1

and, thus SD is just the standard deviation around the ES, considering
only the values below VaR.

We use an expanding window to estimate the model, starting with the
2915 observations from the 10/2/2000-12/2/2011 period. Each day we add
a new observation, estimate the models and apply the algorithm to ge-
nerate N = 5000 h-day ahead return simulations from which we compu-
te forecasts for VaR and ES. The forecasting exercise extends over 1260
days, the last five years in our sample, 12/5/2011-9/30/2016, obtaining
daily forecasts of h-day ahead of the VaR, ES and SD risk measures.

Following the McNeil & Frey (2000) proposal, under the EVT approach
we estimate the ¢ and f parameters by fitting the Generalized Pareto
distribution (GPD) to the left tail of standardized return innovations.
We generate N = 5000 simulations for the h-day ahead return 7y,
using a combination of bootstrapping in-sample residuals from the
fitted models (i.e., FHS) and GPD simulation. We apply the following
algorithm, which was also proposed independently by Danielsson and
de Vries (2000),

(i) Use bootstrapping to randomly sample from the standardized
innovations for each future period and for each of the N trajec-
tories.

(ii) If a selected innovation z" is below the threshold (u), we draw a
realization y from the previously estimated GPD(, B). The value
y is taken as the excess below the threshold u, i.e., the numer-
ical value of the innovation to be used in simulation will be:
Z'=u-y.

(iii) Otherwise, return standardized innovations themselves.
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(iv) Finally, we trace back from simulated standardized innova-
tions to recover the returns and we end up with N sequences
of hypothetical daily returns for day s + 1 through day s + h
. From these, we calculate the hypothetical h-day returns as
Ton = Yn=1Tissn for i=1,2,..,N, and we can calculate the
h-day VaR, h-day ES and h-day SD, as described above.

(v) We repeat this procedure fors + 1, s + 2, s + 3, ..., s + 1259, to
cover the out-of-sample period.

3.4. Data and Estimation Models

We work with daily percentage returns on assets over the sample period
10/2/2000 - 9/30/2016 (4175 sample observations). Daily returns are compu-
ted as 100 times the difference of the log prices, i.e. 100[[n(P¢4,) — In(P)]%.
The financial assets considered are: International Business Machines [IBM]
($), Banco Santander [SAN] (€), AXA [AXA] (€) and BP [BP] (£). The data
were extracted from Datastream.

Table 22 reports descriptive statistics for the daily percentage return
series. All of them have a mean close to zero. Median returns are zero.
SAN has the largest total range (max — min) and BP has the smallest
range. The unconditional standard deviation (S.D.) is around 2, with AXA
having the ighest and IBM the lowest one for IBM. All assets have negative
skewness, except AXA. For all assets considered the kurtosis statistic is large,
implying that the distributions of those returns have much thicker tails
than the Normal distribution. Accordingly, the Jarque-Bera statistic (J-B) is
statistically significant, rejecting the assumption of Normality in all cases.

Table 22: Descriptive statistics for daily percent returns

Sample: 10/2/2000 - 9/30/2016 (4175 daily observations). Mean and median
returns in basis points. S.D. is the standard deviation, J-B is the Jarque-Bera
test statistic.

Mean (bps) Median (bps) Max  Min S.D. Skewness Kurtosis J-B

IBM 0.83 0 11.35 -16.89 1.58 -0.22 12.33  15194.87
SAN 1.56 0 20.88 -22.17 2.26 -0.07 10.50 9793.17
AXA 1.47 0 19.78 -20.35 2.69 0.19 10.24 9155.81
BP -0.69 0 10.58 -14.04 1.69 -0.19 8.01 4390.88
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To perform an ES analysis, we estimate the APARCH volatility model
(Ding, Granger and Engle, 1993) under the different probability distri-
butions for return innovations: Gaussian, Student-t, skewed Student-t,
skewed Generalized Error and Johnson S,. An AR(1) model was con-
sidered for the conditional mean return, which is sufficient to produce
serially uncorrelated innovations*. The APARCH model is particularly
successful in capturing the heteroscedasticity exhibited by the data due
to the power of the conditional standard deviation is a free parameter,
which provides more flexibility to the dynamics of volatility.

For a given return series 71,---»7r | the model adopted is
Tt = o+ P11—q + & &=0z; t=12,..,T

0"55 =w+ ar(le—| — V15t—i)5 + ﬁl(%—j)g

where @, @;.%,B, and J are parameters to be estimated. The parameter
i reflects the leverage effect (—1 <% <1). A positive (resp. negati-
ve) value of V1 means that past negative (resp. positive) shocks have a
deeper impact on current conditional volatility than past positive (resp.
negative) shocks. The parameter ¢ plays the role of a Box-Cox transfor-
mation of a,(6 > 0)..

In EVT implementation we use 10% of the data as the threshold excess. For
the conditional models, a filter is necessary to model the conditional mean
and the variance of the data. Thus, we estimate the AR(1)-APARCH(1,1)
model described above, in which z represents a F distributed white noise
series with unit variance. As explained previously, we set F to be Gaus-
sian, Student-t, skewed Student-t, skewed Generalized Error and Johnson
S, distributions. In all models we jointly estimate by maximum likelihood
the parameters in the equation for the mean return, the equation for its
conditional standard deviation and the probability distribution for the re-
turn innovations. In addition, through the usual diagnostics performed on
the standardized residuals and their squared values, we assess that returns

34. All computations were performed with the rugarch package (version 1.3-4) of R software (version
3.1.1) designed for the estimation and forecast of various univariate ARCH-type models. In the estimation
of EVT models, we use ismev (version 1.41) and evir (version 1.7-3) packages.
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are properly filtered. Based on this filtering, the conditional models are
estimated as described in the previous subsections.

Table 23 presents the results of the estimation by the maximum likeli-
hood method of the Generalized Pareto distribution parameters jointly
with the respective parameters of the probability distribution of the
innovations and those of the model AR(1)- APARCH(1,1), for a given
threshold u , for each asset. For all asset returns, the estimated tail index
¢ of the Generalized Pareto distribution is positive. Then, the left tail of
the GPD distribution is fat and the probability of occurrence of extreme
losses is higher than predicted by the Normal distribution. The estima-
ted tail indexes of IBM and SAN are higher than those of AXA and BP,
reflecting a thicker left tail of the return distribution.

Table 24 shows estimated parameters for the EVT-JSU-AR(1)-APARCH(1,1)
model under a JSU distribution for all assets®®. The autoregressive effect
in the volatility specification is strong, with £, around 0.93, suggesting
strong memory effects. The estimated y, coefficient is positive and sta-
tistically significant at 10% in all cases, indicating the existence of a
leverage effect for negative returns in the conditional volatility specifi-
cation. It is also important that the skewness parameter in the Johnson
S, is less than 0O for all assets, suggesting the convenience of incorpora-
ting negative asymmetry to model innovations appropriately, although
this parameter is not significant at 5% for IBM and at 10% for BP. The
shape parameter is low, implying high kurtosis. Finally, ¢ takes values
between 1.04 and 1.09, being significantly different from 2. This result
suggests that, instead of modeling the conditional variance, we should
model the conditional standard deviation, as it has been pointed out for
a variety of assets by Garcia-Jorcano and Novales (2017).

The maximum likelihood estimates of the Generalized Pareto distribu-
tion parameters for IBM are (¢, ) = (0.39,0.51), with standard errors of
0.12 and 0.07 respectively. Figure 16 shows a well-defined likelihood
profile for this asset with a maximum log-likelihood of -91.877 reached
for £ = 0.39. Thus, the model we have fitted is essentially a very heavy-
tailed, infinite-variance model.

35. Estimation results for alternative models are available from the author upon request.



Table 23: Parameter estimates for the Generalized Pareto Distribution using

daily returns

Sample: 10/2/2000 - 9/30/2016. u is the threshold, ¢ is the shape parame-
ter, /8 is the scale parameter. (¢) and (#) correspond to the standard error of

the shape and scale parameters, respectively.
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Daily u & B (&) )
N IBM -1.041 0.392 0.493 0.121 0.072
SAN -1.239 0.240 0.522 0.103 0.070
AXA -1.139 0.048 0.712 0.067 0.079
BP -1.131 0.055 0.642 0.086 0.079
ST IBM -1.061 0.391 0.514 0.120 0.075
SAN -1.249 0.235 0.534 0.101 0.071
AXA -1.175 0.059 0.697 0.070 0.079
BP -1.158 0.072 0.635 0.089 0.080
SKST IBM -1.051 0.390 0.514 0.120 0.075
SAN -1.235 0.229 0.539 0.100 0.071
AXA -1.159 0.057 0.702 0.069 0.079
BP -1.154 0.078 0.627 0.090 0.079
SGED IBM -1.037 0.376 0.524 0.118 0.076
SAN -1.233 0.225 0.542 0.100 0.072
AXA -1.152 0.055 0.705 0.069 0.079
BP -1.145 0.072 0.628 0.089 0.079
JSU IBM -1.053 0.392 0.516 0.121 0.075
SAN -1.236 0.230 0.539 0.100 0.071
AXA -1.157 0.057 0.703 0.069 0.079
BP -1.152 0.074 0.631 0.089 0.079
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Figure I6: Likelihood profile for {-parameter from the threshold excess model
applied to filtered residuals of IBM under JSU-EVT model

Pastig | sgbhiite

We consider the tail of the IBM return distribution as defined by a thres-
hold u = 1.0533, which leaves us with 126 exceedances (10% of 1260
data points). Figure 17 shows the fitted GPD model for the excess dis-
tribution, F,(y) where y = z — u, superimposed on points plotted at
empirical estimates of excess probabilities for each loss (126 losses)®*.
Notice the good correspondence between the empirical estimates and
the GPD curve. Under the EVT approach the filtered residuals from all
models considered show a very similar fit to the GPD curve, especially
when the filtered residuals come from asymmetric distributions. Figu-
re 18 shows the estimation tail probabilities on logarithmic axes. The
points on the graph are the 126 threshold exceedances and are plotted at
y-values corresponding to the tail of the empirical distribution function.
The smooth curve running through the points is the tail estimator (defi-
ned for the right tail):

. T, z—u\"V
1—F(Z):?<1+f 7 )

36. Figures 17 and 18 show the right tail, considering losses as positive numbers.
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Figure I7: Empirical distribution of threshold excesses for IBM filtered resi-
duals under EVT-AR(I)-APARCH(I.1)-JSU model versus the fitted GPD
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Figure I8: The smooth curve through the points shows the estimated tail of filtered
residuals for IBM under AR(I)-APARCH(1,)-JSU model using the tail estimator. Points are
plotted at empirical tail probabilities calculated from the empirical distribution function

Tesll feslZ Je{Z  SedlZ el
i i i i

aFy

&

1) (oA ag asaia]

Epld lel) Do

3.5. Evaluating 1-day ES forecasts

3.5.1. ES forecasts under the parametric approach

In this section we present the results from VaR and ES forecasts fo-
llowing a standard time-varying parametric approach. We restrict our
attention to the left tail of the distribution and the 1%, 2.5% and 5% sig-
nificance levels. We compute recursive ES forecasts from an expanding
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window. First, each model is estimated using 2915 daily observations
from the 10/2/2000-12/2/2011 sample period. After that, we increase
the initial sample by one data point each day until the end of 2016, to
compute 1-day ahead VaR and ES forecasts over five years: 2012-2016
(1260 data observations). In this forecasting period models are estimated
every 50 days. This choice tries to reduce the computational cost while
avoiding frequent parameter variation due in part to pure noise.

Table 25 displays descriptive statistics for returns for in-sample
(10/2/2000-12/2/2011) and out-of-sample (12/5/2011-9/30/2016) perio-
ds. Skewness is negative, except for SAN and AXA in the in-sample
period. Likewise, kurtosis is higher than 3 for the four stocks in both pe-
riods. We are thus confronted with fat tail distributions and the Jarque-
Bera statistic clearly rejects the null hypothesis of a Normal distribution.
VaR and ES forecasts based on the assumption of a Normal distribution
of returns are therefore inappropriate, so we will compute them under a
non-Normal framework using alternative distributions as well as relying
on a different approach, like EVT. Focusing on the behavior of the left
tail of these leptokurtic distributions seems justified as it should allow
for a better estimation of extreme variations in financial returns.

We forecast both risk measures, not only with the full distribution but
also using only extreme events as explained previously. Figure 19 shows
IBM daily percentage returns (1260 data) together with out-of-sample
VaRiy, and VaRsy forecasts from an AR(1) model for returns with a
JSU-APARCH(1,1) model for return innovations. Such forecasts are
compared with those obtained by applying Extreme Value Theory (EVT),
fitting a GPD density to the tail of the distribution. The differences in
VaR calculated with the two models are small for the 5% quantile but
they become more important for the 10 quantile. VaR forecasts un-
der EVT indicate higher losses than predicted VaR without the use of
EVT. Figure 20 shows ES19% and ESs% forecasts obtained with EVT and
without EVT. We can see that the forecast of average losses exceeding
VaR under the GPD distribution in the EVT approach is greater than the
one obtained from a JSU distribution in the non-EVT approach, especia-
lly for the more extreme quantiles.
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Table 25: Descriptive statistics for log-returns (%) of individual stocks over
the in-sample (10/2/2000-12/2/20Ill) and out-of-sample (12/5/20II-
9/30/20I6) periods. JB stat. is the Jarque-Bera test statistic

In-Sample Out-of-Sample
Daily IBM SAN AXA BP IBM SAN AXA BP

Observations 2915 2915 2915 2915 1260 1260 1260 1260

Mean (bps.) 1.79 -2.18 -394 -0.89 -1.41 -0.13 4.26 -0.26

Median (bps.) 0.00 0.00 0.00 0.00 0.00 1.94 11.04 0.00

St. Dev 1.74 2.31 2.96 1.80 1.18 2.13 1.93 1.43
Skewness -0.12 0.27 0.31 -0.19 -1.00 -1.09 -0.72 -0.16
Kurtosis 11.47 9.09 9.33 7.87 9.77 14.79 9.10 6.84
Maximum 11.35 20.88 19.78 10.58 491 10.14 7.28 6.93
10 percentile -1.73  -2.63 -3.07 -196 -1.24 -2.43 -2.09 -1.60
5 percentile -2.66 -3.67 -460 -2.73 -1.73 -338 -3.22 -2.31
1 percentile -5.13 -6.68 -846 -532 -359 -497 -496 -3.59
Minimum -16.89 -12.72 -20.35 -14.04 -8.64 -22.17 -16.82 -9.08
JB stat. 8724.16 4548.12 4918.84 2902.54 2614.85 7549.73 2063.42 780.63

Figure 19: IBM daily percent returns and VaA, and VaR_, forecasts with the full

1% 5%
sample as well as using only extreme values
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Figure 20: IBM daily percent returns and £€5,, and€5,, forecasts with the full

1 %
sample as well as using only extreme values

AR(1)-APARCH(1,1)-JSU

We now examine our forecasts for the complete out-of-sample period
(5 years, 1260 data). Since we generate time series of VaR and ES fo-
recasts, we present a summary of results over the 5-year period. Table
26 presents the average of out-of-sample 1-day ES forecasts (ES), the
violations ratio (Viol) of the underlying VaR and the backtesting results
for the different models for IBM*". Our discussion here is focused on the
general patterns that appear in these estimation results. The average ES
forecasts from conditional EVT-based models can be seen to be “more
negative” than forecasts from conditional models not based on EVT. As
shown in Figure 20, differences on ES forecasts at 1% significance level
are larger than those at 5% significance level.

It seems desirable that a good ES model may have a violation ratio close
to the theoretical one. Indeed, as we will see below, some backtesting
tests for ES are based on this comparison. Conditional EVT-based models
tend to yield a violation ratio very close to the theoretical one. Depar-
tures from the theoretical violation ratio are larger for models not using
EVT, especially under the Normal and Student-t distributions for return
innovations. In general, the violations ratio suggests that conditional

37. Results for the rest of individual stocks assets are available from the author upon request.
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EVT-based models forecast the VaR quantile correctly, corroborating
Kuester, Mittnik and Paolella (2006), who attest to the superiority of this
approach. On the other hand, conditional ES models not based on EVT
that incorporate heavy-tailed distributions also perform well, corrobora-
ting Mabrouk and Saadi (2012). But we will show below that EVT-based
models not only show an accurate violation ratio, but they also have a
good performance in ES backtesting. On the other hand, non-EVT based
models have a violation ratio higher than expected and they show a
worse ES forecasting performance than EVT-based models.

If we focus on the conditional models not based on EVT, all tests show
that models with asymmetric distributions for return innovations produ-
ce better ES forecasts. If we take higher p-values as an indication of how
well the model fulfills the condition established in the null hypothesis,
then the JSU distribution can be seen as showing the best performance
in ES forecasting for the set of four stocks. On the other hand, the Z,
test by Acerbi & Szekely and the tests by Costanzino & Curran and Du &
Escanciano do not discriminate among asymmetric distributions.

Under the null hypothesis Acerbi & Szekely the number of theoretical
VaR breaches is Eyo[Nr] = Ta, where N, is the indicator of VaR brea-
ches. The relationship between the two test statistics of Acerbi & Szekely
is:Z, = (14 Z;)N;/Ta — 1. This shows that while Z,, being just an ave-
rage taken over excesses themselves, is insensitive to an excessive num-
ber of exceptions, Z, depends on that number through the ratio N;/Ta.
This is why, when the number of violations exceeds the theoretical level,
p-values for the Z,-test are lower than for the Z, test. An ES model will
pass the Z, test when not only the magnitude but also the frequency of
the excesses is statistically equal to the expected one®.

At the 1% significance level, p-values of Acerbi & Szekely and Graham
& Pal tests for the conditional models not based on EVT theory are very
close to 0. In these cases, we obtain positive realized values for Z, and
Z,, instead of them being equal to zero. In short, we reject H because of
risk undervaluation. For these three tests we observe large differences in

38. Acerbi & Szekely (2014) show that the Z2 test is more powerful than the Z1 test when the null and
alternative hypothesis differ in volatility, while Z1 is more powerful than Z2 in the case of different tail
indexes.
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p-values between conditional models based on EVT and non-EVT based
conditional models in favor of the former, which seem to produce better
risk forecasts. The Graham & Pal test discriminates against the Normal
and Student-t distribution for almost all significance levels for the four
stocks, but only for the non-EVT based ES models.

We indicate in boldface the p-values of the Righi & Ceretta, Acerbi
& Szekely and Graham & Pal tests when we have obtained statistics
with opposite sign to the one embedded in the alternative hypothesis.
That essentially arises for EVT-based models. In the Righi & Ceretta
test we have Hy: E(BT;) = 0, where BT, is the statistic of the test which
estimate the expected loss and its dispersion through the ES and SD,
against H;: E(BT,) < 0 but with some models we obtain E(BT;) >0,
reflecting that most excesses fall between VaR and ES, not beyond
ES, especially under the EVT approach. The first test by Acerbi & Sze-
kely specifies H,y: E(Z;) = 0 against H,: E(Z;) > 0 and the second one,
Hy: E(Z,) = 0 against H;: E(Z;) > 0. However, with some models, es-
pecially models based on EVT, we obtain E(Z;) <0 and E(Z;) <0,
respectively. In the first test that means that the average of realized
excesses is lower in absolute value than the predicted ES. In the second
test, it means that not only the average excess but also the number of
excesses is lower than expected. Finally, in the Graham & Pal test we
have Hy: TR, = TR® against Hy: TR, < TR® where TR° is equal to -a
under the exponential assumption. The null hypothesis is rejected if the
realized value of the sample statistic TR, is significantly lower than
the theoretical level of tail risk TR°. If we obtain TR, = TR® , we will
say that the risk model captures tail risk sufficiently, or that it provides
enough risk coverage, although risk may then be overvalued®. When
that happens, the logarithmic difference between the probability of an
excess and the significance level for VaR (a) follows a distribution with
thicker tails than the exponential distribution. When the forecast CDF is
a correct estimate of the real and unobservable P&L distribution, such
probability differences follow an exponential distribution®.

39. For more details of this tests, see Graham €& Pal (2014).
40. That amounts to return violations, in probability terms, following a Uniform (0,1) distribution.
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Table 26: Mean ES forecasts (ES), violation ratio (Viol) and backtesting
results (p-values) for ES forecasts for IBM

BT, is the test of Righi & Ceretta (2015), Z, and Z, are the tests of Acerbi &
Szekely (2014), TR is the test of Graham & Fal (2014), and Ug, Cgs(1) and
Ces (5) are the unconditional and the conditional (lags = 1 and lags = 5)
tests of Costanzino & Curran (2015) and Du & Escanciano (2016). p-values
in bold indicate that the statistics obtained in these tests have an opposite
sign to that specified under the alternative hypothesis.

IBM 1% significance level

1-day ES Viol BT, Z  Z, TR U, C,(1) C,(5
N -3.249 0.014 0.00 0.01 001 0.0 000 0.65 097
ST -4.205 0.010 0.07 0.0 000 000 001 072  0.99
SKST -4.266 0.010 0.07 0.0 000 0.0 002 073 099
SGED -3.921 0.010 0.02 0.0 0.00 000 001 072  0.99
Jsu -4.206 0.010 0.06 0.00 000 000 0.02 073 099
N-EVT -5.931 0.010 0.38 0.96 1.00 030 026 076 099
ST-EVT -6.059 0.010 0.35 0.92 0.99 030 026 077  0.99
SKST-EVT ~ -6.050 0.010 0.35 0.93 1.00 030 026 077  0.99
SGED-EVT  -5.923 0.010 0.34 0.89 0.98 029 025 077  0.99
JSU-EVT -6.052 0.010 0.34 0.90 1.00 030 026 076 099
IBM 2.5% significance level

1-day ES Viol BT, ZzZ  Z, TR U, C.,(1) C,5
N -2.847 0.022 001 001 003 000 0.13 079 084
ST -3.305 0.024 0.13 0.03 005 001 029 086 089
SKST -3.350 0.021 0.12 001 008 003 039 100 0091
SGED -3.255 0.018 0.05 001 032 000 048 063 091
Jsu -3.352 0.019 0.10 0.01 032 0.02 046 0.81 0.92
N-EVT -4.042 0.022 036 0.79 0.95 049 035 070 091
ST-EVT -4.122 0022 031 068 094 047 038 100  0.93
SKST-EVT ~ -4.116 0.024 0.34 0.73 0.96 0.47 038 099 093
SGED-EVT  -4.056 0.022 032 0.66 092 048 035 069  0.91
JSU-EVT -4.116 0.023 032 068 0.99 047 038 100  0.93
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IBM 5% significance level

1-day ES Viol BT, Zz Z, TR U, C,(1) C,(5
N -2.510 0.037 0.5 0.04 049 000 0.17 037  0.55
ST -2.699 0.044 0.18 0.13 0.40 0.09 033 0.1 0.41
SKST -2.734 0.044 020 0.1 039 0.6 022 0.1  0.40
SGED -2.738 0.037 0.15 0.07 075 002 0.06 036  0.58
Jsu -2.752 0.040 0.18 0.11 067 0.15 0.14 0.13  0.42
N-EVT -3.003 0.053 0.48 0.69 0.90 052 041 041 067
ST-EVT -3.055 0.049 0.40 070 0.97 054 037 0.3  0.46
SKST-EVT ~ -3.050 0.050 0.41 0.76 0.96 0.54 037 0.13 0.6

SGED-EVT -3.015 0.053 0.44 0.69 0.96 0.54 0.36 0.23 0.59

JSU-EVT -3.050 0.051 0.41 0.63 0.93 0.54 037 0.13 0.45

Bold figures in the tables signal a frequent overvaluation of risk for
EVT-based ES models. In them, the number of violations does not de-
part much from the theoretical value, reflecting good VaR forecasts.
But the sign of the test statistic is contrary to that in the null hypothe-
sis, showing an overvaluation of ES that would imply too high a level
of required capital. Such overvaluation will not be detected by one-
sided tests. However, the absolute value of the statistic is generally
very small, suggesting that the estimation error may be statistically
acceptable. The possible overvaluation of risk can be seen in Figure 21
as it shows the tail probability distributions estimated for IBM. Other
assets show a similar picture. Curve lines show the estimated tail pro-
babilities, while the rectangles display observed relative frequencies.
Estimated parameters for each distribution are shown in parenthesis.
We observe that most probability distributions other than GPD tend
to undervalue the weight of extreme returns. Such undervaluation is
especially obvious for the Normal distribution. On the contrary, the
GPD is suitable to appropriately capture tail risk, and it avoids under-
estimating extreme risks, although at the price of slight overvaluation
of the risk of medium range losses.
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Figure 2I: Estimated tail-distributions for IBM. N is the Normal distribution

ST is the Student-t (4.67), SKST is the Skewed Student-t (0.97, 4.69), SGED is
the Skewed Generalized Error (0.99, 1.15) and JSU is the Johnson SU (-0.092,
1.53) distribution. Numerical estimates for parameters in brackets.

Tail-ghirBauteas for IBM

By and large, we have obtained that for our sample of stocks, condi-
tional EVT-based models not only produce better VaR forecasts, but
also, they yield the best results in ES forecasts according to different ES
backtests. In many cases, we obtain p-values close to 1 with EVT-based
models. The success of EVT models for ES forecasting corroborates Ma-
rinelli et al. (2007), Jalal and Rockinger (2008) and Wong et al. (2012).
However, we must bear in mind that the Righi & Ceretta, Acerbi & Sze-
kely and Graham & Pal tests are one-sided by nature and they focus on
risk undervaluation. Therefore, in those tests risk overvaluation does not
lead to a rejection of the null hypothesis, and that seems to be often the
case in ES forecasting with EVT-based models.

3.5.2. ES forecasts under Filtered Historical Simulation

We evaluate the performance results of 1-day ahead out-of-sample ES
forecasts from FHS using the test of Righi & Ceretta and the two tests of
Acerbi & Szekely because they are suitable for non-parametric VaR and
ES forecasts. Table 27 shows average ES forecasts (ES), the violations
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Table 27: Mean ES forecasts (ES), violation ratio (Viol) and backtesting
results (p- values) for ES forecasts for IBM and for I-day returns calculated
by Filtered Historical Simulations (FHS)

BT, is the test of Righi & Ceretta (2015) and Z, and Z, are the tests of Acerbi
& Szekely (2014). p-values in bold indicate that the statistics obtained in these
tests have an opposite sign to that specified under the alternative hypothesis.

IBM 1% significance level

FHS ES Viol BT, Z, Z,
N -4.553 0.011 0.15 0.02 0.02
ST -4.629 0.011 0.11 0.00 0.00
SKST -4.627 0.010 0.10 0.02 0.02
SGED -4.577 0.010 0.13 0.02 0.02
JSU -4.619 0.011 0.15 0.00 0.12
N-EVT -4.490 0.010 1.00 0.90 0.97
ST-EVT -4.592 0.011 0.12 0.14 0.97
SKST-EVT -4.575 0.011 0.12 0.10 0.97
SGED-EVT -4.519 0.011 0.09 0.08 1.00
JSU-EVT -4.573 0.011 0.12 0.00 0.97
IBM 2.5% significance level

FHS ES Viol BT, Z, Z,
N -3.474 0.021 0.19 0.02 0.29
ST -3.486 0.021 0.14 0.03 0.26
SKST -3.485 0.022 0.16 0.01 0.13
SGED -3.471 0.021 0.19 0.03 0.30
JSU -3.481 0.022 0.18 0.03 0.45
N-EVT -3.471 0.021 1.00 0.80 0.87
ST-EVT -3.492 0.021 0.14 0.37 0.94
SKST-EVT -3.481 0.022 0.17 0.42 0.88
SGED-EVT -3.466 0.021 0.14 0.31 0.93
JSU-EVT -3.482 0.022 0.17 0.16 0.88
IBM 5% significance level

FHS ES Viol BT, Z, Z,
N -2.791 0.042 0.27 0.14 0.68
ST -2.784 0.044 0.21 0.13 0.50
SKST -2.782 0.043 0.22 0.05 0.43
SGED -2.780 0.043 0.26 0.10 0.51
JSU -2.781 0.044 0.24 0.12 0.45
N-EVT -2.792 0.042 1.00 0.75 0.75
ST-EVT -2.792 0.044 0.25 0.44 0.74
SKST-EVT -2.784 0.045 0.26 0.42 0.80
SGED-EVT -2.784 0.044 0.25 0.39 0.82
JSU-EVT -2.786 0.044 0.25 0.52 0.79

141



142

Laura Garcia Jorcano

ratio of the underlying VaR and backtesting results*'. A comparison with
Table 26 shows that (i) conditional EVT-based models do not always
present “more negative” average ES values than conditional models not
based on EVT. Besides, average ES values over the out-of-sample period
(5 years, 1260 data) are now more similar among models than under the
parametric approach. This observation is important because it amounts
to a reduction in Model Risk, i.e., in the uncertainty that arises on the
true value of VaR and ES due to the availability of forecasts coming
from a variety of alternative models, (ii) average ES forecasts under FHS
are closer to those obtained under the parametric approach for non EVT-
based models than for EVT-based models, (iii) regarding VaR violation
rates, there is some tendency to undervalue risk at the 1% significance
level (more violations than expected) and overvalue risk at the 5% sig-
nificance level (less violations than expected), (iv) unlike Table 26, EVT-
based models do not yield a lower violation rate than non-EVT based
models, (v) models not based on EVT seem again unsuitable in terms of
ES forecasts, being rejected by Acerbi & Szekely Z, and Z, tests for ES,,,
and ES, .,

Less discrimination is obtained at 5% significance level. For instance, at
that level, all models display a good ES performance for BP at 10% sig-
nificance, although the Z, test suggests that ES is possibly overvalued,
and (vi) overvaluation of risk as signaled by a sign of the test statistic
contrary to H, in the one-tail tests is much less frequent than under the
parametric approach.

The conclusions obtained when applying ES backtests under the para-
metric and FHS approaches are similar, which is reassuring. Differen-
ces between conditional models based on EVT and not based on EVT
are more evident under the parametric approach, because the power
and flexibility of conditional volatility models is diluted by histori-
cal simulation. The dilution depends on the number of realizations
or paths generated from the standardized residuals from the first step
estimation.

41. Results for the rest of individual stocks assets are available from the author upon request.
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3.6. Conclusions

In spite of the substantial theoretical evidence documenting the supe-
riority of Expected Shortfall (ES) over VaR as a measure of risk, fi-
nancial institutions and regulators have only recently embraced ES as
an alternative to VaR for financial risk management. One of the major
obstacles in this transition has been the unavailability of simple tools
for the evaluation of ES forecasts. While the Basel rules for VaR tests
are based on counting the number of exceptions, assessing the adequa-
cy of an ES model requires the consideration of the size of tail losses
beyond the VaR boundary. Different approaches have been proposed in
the literature for ES backtesting in the last few years but, to the best of
our knowledge, this paper provides the first extensive comparison of a
variety of alternative ES backtesting procedures.

We use daily market closing prices for 10/2/2000 to 9/30/2016 on IBM,
Santander, AXA and BP, and we consider some flexible families of as-
ymmetric distributions for as- set returns that include more standard
probability distributions as special cases. Normal and Student-t distri-
butions are considered as a benchmark for comparison. Given the evi-
dence put forward in Garcia-Jorcano and Novales (2017) we use an
APARCH volatility specification for all assets. We are initially interested
in exploring which probability distribution seems more appropriate to
model asset returns in order to get good ES forecasts. Following the
standard risk management methodology, once we estimate the dynamics
of returns and the parameters of the probability distribution for return
innovations, we forecast returns and volatility and apply a parametric
approach to forecast VaR and ES. After that, we use a variety of tests
recently proposed for ES model validation.

As the true temporal dependency of financial returns is a complex is-
sue, the standard approach to risk management can be improved by
considering a two-step procedure that applies Extreme Value Theory
(EVT): First, filtering the returns through a more or less complex GARCH
model and second, estimating an extreme value theory type of density
for the tail of the distribution of return innovations, using their assu-
med iid structure. This two-step procedure was proposed by McNeil &
Frey (2000) and it leads to a significant improvement, since VaR and ES
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forecasts then incorporate changes in expected returns and volatility
over time. So, in the application of EVT we first estimate a dynamic
model for returns and their volatility under a given probability distri-
bution. After that, we fit a Generalized Pareto Distribution for return
innovations once we have filtered autocorrelations and GARCH effects.
As in the standard approach, we then forecast VaR and ES at different
significance levels at 1- and 10-day horizons and compare the results
with those obtained under the standard parametric approach.

In standard conditional models fitted to the full distribution of return
innovations we observe that asymmetric distributions play an important
role in capturing tail risk. This is because some stylized facts of financial
returns such as volatility clusters, heavy tails and asymmetry are co-
llected suitably by these asymmetric distributions. When we apply EVT
to return innovations by modeling the tail with a GPD we obtain good
ES forecasts regardless of the probability distribution used for returns.
So, it looks as if considering just the return innovations in the tail of
the distribution is more important than discriminating among proba-
bility distributions when forecasting ES. Besides, each combination of
APARCH volatility and probability distribution under the EVT approach
dominates the similar specification under the standard approach fitted
to the full distribution. Conditional EVT models turn out to be more ac-
curate and reliable than standard conditional models not based on EVT
both, for forecasting VaR and for predicting losses beyond VaR.

We have also shown that using Filtered Historical Simulation can be
very useful. First, qualitative results under FHS are very similar to those
obtained under the parametric approach, which is reassuring. EVT-
based models dominate non-EVT based models for forecasting both VaR
and ES, and asymmetric probability distributions yield more accurate
ES forecasts. Second, ES forecasts are much more similar for different
probability distributions, and also between forecasts from EVT-based
models and non-EVT based models. That implies a considerable reduction
in model risk, i.e., the uncertainty in ES forecasting because of having
alternative model specifications. Given the extreme importance of these
forecasts for capital requirements at financial institutions, reducing
model risk is a central issue in tail risk estimation.

The ES tests we consider focus on a possible undervaluation of risk,
except for Costanzino & Curran and Du & Escanciano tests which are
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two-tailed tests. We have pointed out that in some cases backtesting
does not reject the model specification because the sample evidence is
against both the null and the alternative hypothesis. In other words,
some ES models are not rejected in spite of the fact that they overvalue
risk, albeit by a small amount in most cases. When using ES to build
the institution’s reserves to cover potential losses in times of crisis, the
undervaluation may be fatal, but overvaluation will lead to inefficient
use of capital. This is a relevant consideration that should be taken into
account for ES model validation.

A final remark from this research relates to the possible weak power of
currently available tests for ES forecasting. Other than showing a clear
preference for an EVT approach as well as a rejection of symmetric pro-
bability distributions for return innovations, none of the tests we have
considered are able to discriminate much among alternative probability
distributions. However, the recommendation to use FHS under an EVT
specification for ES forecasting is a clear conclusion of this research.
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