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Santander Financial Institute (www.sanfi.es)

SANFI es el centro de referencia internacional en la generación, difusión 
y transferencia del conocimiento sobre el sector financiero, promovido 
por la UC y el Banco Santander a través de la Fundación UCEIF. Desde 
sus inicios, dirige actividades en áreas de formación, investigación y 
transferencia:

Máster en Banca y Mercados Financieros UC-Banco Santander

Constituye el eje nuclear de una formación altamente especializada, or-
ganizada desde la fundación en colaboración con el Banco Santander. 
Es Impartido en España, México, Marruecos, Chile y Brasil, dónde se 
están desarrollando la 24ª Edición, 21ª Edición, 13ª Edición y 3ª Edición 
respectivamente.

Formación In Company

SANFI potencia sus actividades para desarrollar la formación de pro-
fesionales del sector financiero, principalmente del propio Santander, 
destacando también su actuación dentro de otros programas, como el 
realizado con el Attijariwafa Bank.

Archivo Histórico del Banco Santander

Situado en la CPD del Santander en Solares, comprende la clasificación, 
catalogación, administración y custodia, así como la investigación y 
difusión de los propios fondos de Banco Santander como de otras enti-
dades. Cabe destacar que posee más de 27.000 registros de fondo.
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Educación Financiera

Finanzas para Mortales (www.finanzasparamortales.es). Elegido como el 
Mejor Proyecto de Educación Financiera 2018 por el Banco de España y 
la CNMV, está dirigido a fomentar la cultura financiera de la sociedad, 
a través de su plataforma online y sus sesiones presenciales gratuitas. 
Cuenta con más de 1.200 voluntarios procedentes en su mayoría de 
Banco Santander, distribuidos por los diferentes puntos de la geografía 
española. Desde 2015, han impartido más de 4.250 sesiones formati-
vas, logrando acercar los conocimientos financieros a más de 10.000 
beneficiarios de diversas instituciones entre las que destacan, colegios 
e institutos, Cruz Roja, Fundación del Secretariado Gitano, la ONCE, 
Fundación… 

Investigación

• 	 Atracción del Talento Internacional con programas de Becas y 
Ayudas para fomentar la realización de proyectos de investiga-
ción, especialmente de Jóvenes Investigadores, que fomenten 
el conocimiento de las metodologías y técnicas aplicables en el 
ejercicio de la actividad financiera, con especial interés en las 
realizadas por entidades bancarias, para favorecer al crecimien-
to y desarrollo económico de los países y al bienestar social. 

•	 Premios Tesis Doctorales, cuyo fin es promover y reconocer la 
generación de conocimientos a través de actuaciones en el ám�-
bito del doctorado que impulsen el estudio y la investigación en 
el sector financiero.

•	 Por último, la línea editorial en la que se enmarcan estos Cua-
dernos de Investigación, con el objetivo de poner a disposición 
de la sociedad, el conocimiento generado en torno al sector fi-
nanciero fruto de todas las acciones desarrolladas en el ámbito 
del SANFI y especialmente, de los resultados de las Becas, Ayu-
das y Premios Tesis Doctorales.

http://www.finanzasparamortales.es
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SUMMARY

The estimation of risk measures is an area of highest importance in the fi-
nancial industry. Risk measures play a major role in the risk-management 
and in the computation of regulatory capital. The Basel III document has 
suggested to shift from Value at Risk (VaR) into Expected Shortfall (ES) 
as a risk measure and to consider stressed scenarios at a new confidence 
level of 97.5%. This change is motivated by the appealing theoretical 
properties of ES as a measure of risk and the poor properties of VaR. In 
particular, VaR fails to control for “tail risk”. In this transition, the major 
challenge faced by financial institutions is the unavailability of simple 
tools for evaluation of ES forecasts (i.e. backtesting ES).

The objective of this thesis is to compare the performance of a variety 
of models for VaR and ES estimation for a collection of assets of dif-
ferent nature: stock indexes, individual stocks, bonds, exchange rates, 
and commodities. Throughout the thesis, by a VaR or an ES “model” is 
meant a given specification for conditional volatility, combined with an 
assumption on the probability distribution of return innovations.
Specifically, Chapter 1 considers the concept of unbiasedness in VaR 
estimation. Francioni and Herzog (2012) (FH) showed that there exists 
a bias correction for VaR when returns are Normally distributed. In this 
chapter the FH analysis is extended to the Student-t distribution as well 
as to Mixtures of two Normal distributions, using a bootstrapping algo-
rithm proposed by FH. The use of the probability-unbiased VaR avoids 
the systematic underestimation of risk implied by the bias of standard 
VaR measures. The magnitude of the distortion that needs to be exerted 
on the quantile to move from the standard VaR to the probability-unbia-
sed VaR depends on the sample size and on the distribution assumption 
on returns. Since financial returns usually have thick tails, the smaller 
the sample size and the lower the heaviness of the tail of the assumed 
distribution in estimation, the higher will be the distortion to be applied 
to achieve unbiasedness. This VaR adjustment allows us to work with 
small samples knowing that the estimated VaR will generally display 
a good performance. Furthermore, the results in the thesis show that 
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using a small sample may easily lead to more accurate VaR estimates 
than longer samples according to the Exceedance Probability and to the 
Observed Absolute Deviation per year (mean of the absolute differences 
between the expected number of exceedances and the number of obser-
ved exceedances). The good performance of the probability-unbiased 
VaR follows from the fact that a short sample size allows for capturing 
better the structural changes that arise over time in financial returns due 
to trading behavior.

Chapter 2 analyzes how the efficiency of VaR depends on the vola-
tility specification and the assumption on the probability distribution 
for return innovations. This question is crucial for risk managers, since 
there are so many potential choices for volatility model and probabi-
lity distributions that it would be very convenient to establish some 
priorities in modeling returns for risk estimation. We consider different 
conditional VaR models for assets of different nature, using symmetric 
and asymmetric probability distributions for the innovations and vo-
latility models with and without leverage. We calculate VaR estimates 
following the parametric approach. The ability to explain sample return 
moments might be considered a natural condition to obtain a good VaR 
performance. However, even though significant effort is usually placed 
in selecting an appropriate combination of probability distribution and 
volatility specification in VaR estimation, the ability to explain sample 
return moments is seldom examined. After using simulation methods to 
calculate implied return moments from estimated models, we compare 
the implied levels of skewness and kurtosis of returns with the analogue 
sample moments. 

We show that the ability to explain sample moments is in fact linked to 
performance in VaR estimation. Such performance is examined through 
standard tests: the unconditional coverage test of Kupiec (1995), the in-
dependence and conditional coverage tests of Christoffersen (1998), the 
Dynamic Quantile test of Engle and Manganelli (2004), as well as the loss 
functions proposed by Lopez (1998, 1999) and Sarma et al. (2003) and 
that of Giacomini and Komunjer (2005). 

Relative to an ever increasing literature, we contribute in different ways:
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1.	 considering a set of probability distributions that have recently 
been suggested to be appropriate for capturing the skewness 
and kurtosis of financial data, but whose performance for VaR 
estimation has not been compared yet on a common data set,

2.	 considering the APARCH and FGARCH volatility models with 
leverage that have also been recognized as being adequate for 
financial returns,

3.	 applying existing backtesting procedures for the different VaR 
models to a wide array of assets of different nature,

4.	 comparing the relevance of the assumed probability distribution 
for return innovations and the volatility specification for VaR 
performance,

5.	 introducing a dominance criterion to establish a ranking of models 
on the basis of their behavior under standard VaR validation tests, 
and

6.	 using the dominance criterion and the Model Confidence Set 
approach to search for robust conclusions on the preference of 
some probability distributions and volatility specifications.

Two clear results refer to issues that have been analyzed in previous 
research by a number of authors:

1.	 VaR models that assume asymmetric probability distributions for return 
innovations, like the skewed Student-t distribution, skewed Gen-
eralized Error distribution, Johnson SU distribution, and skewed 
Generalized-t distribution achieve better VaR performance than 
models with symmetric distributions, and

2.	 volatility models with leverage, like APARCH and FGARCH, show a 
better VaR performance than more standard GARCH and GJR-GARCH 
volatility specifications. Our analysis highlights other important 
issues.

A third result is that the shape and the skew of the assumed probability 
distribution for innovations are even more important for the performan-
ce of a Value at Risk model than including a leverage effect in volatility. 
This corroborates results by previous authors. We provide a thorough 
analysis of this issue by showing that the result holds for the wide set of 
assets we have considered:
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a)	 the frequency of rejections of VaR tests in models that differ in 
their volatility specification is similar, while rejection frequencies 
among models with the same volatility specification but a 
different probability distribution for the innovations can differ 
very significantly,

b)	 changing the probability distribution in a VaR model affects the 
p-value of the statistic for VaR tests by a larger amount than 
changing the volatility specification, and

c)	 the dominance criterion we have introduced in this chapter 
establishes a clear ranking between models differing in their 
probability distribution, while the distinction between models 
that differ in their volatility specification is much less clear.

A fourth result deals with the fact that our estimates suggest that for a 
number of financial assets the true, unobserved volatility dynamics should 
not be specified in terms of the squared conditional standard deviation. 
Hence, models specified for the conditional variance are prone to pro-
duce biased results. Dealing with the power of the conditional standard 
deviation as a free parameter is an important feature of the APARCH/
FGARCH volatility specifications that explains their better performance 
in validation tests of VaR forecasts.

A final result emerges from the consideration of the different criteria 
used in the chapter to choose among models for VaR estimation: the 
combination of APARCH or FGARCH volatility with a skewed Generalized 
Error, skewed Generalized-t or Johnson SU distributions seem to be have 
the best VaR performance for a wide array of assets of different nature.

In Chapter 3 we estimate the conditional Expected Shortfall based on 
the Extreme Value Theory (EVT) approach using asymmetric probability 
distributions for return innovations, and we analyze the accuracy of 
our estimates at 1- and 10-day horizons, before and during the 2008 
financial crisis, using daily data. We take into account volatility clustering 
and leverage effects in return volatility by using the APARCH model 
under different probability distributions assumed for the standardized 
innovations: Gaussian, Student-t, skewed Student-t, skewed generalized 
error and Johnson SU and under EVT methods, following the two-
step procedure of McNeil & Frey (2000). This two-step procedure fits a 
Generalized Pareto Distribution to the extreme values of the standardized 
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residuals generated by APARCH models. This two-step procedure fits a 
Generalized Pareto Distribution to the extreme values of the standardized 
residuals generated by APARCH models. Then, we compare the one-
step-ahead out-of-sample ES forecast performance of all these models 
for different significance levels (α). Previously existing backtesting for 
ES have been shown to have serious limitations [as McNeil & Frey 
(2000) test, Berkowitz (2001) test, Kerkhof and Melenberg (2004) 
test and Wong (2008) test]. Such limitations are overcome by some 
recent ES backtesting proposals that we use for ES evaluation: the 
Righi & Ceretta (2013) test, two tests by Acerbi & Szekely (2014) 
that are straightforward but require simulation analysis (like the 
Righi & Ceretta test), the test of Graham & Pál (2014), which is an 
extension of the Lugannani-Rice approach of Wong, the quantile-
space unconditional coverage test of Costanzino & Curran (2015) 
for the family of Spectral Risk Measures, of which ES is a member 
and, finally, the conditional test of Du & Escanciano (2016).
This chapter contributes to the literature in different ways:

i)	 comparing the performance of the standard parametric approach 
with two alternatives to ES forecasting that take into account 
volatility clustering and asymmetric returns: EVT and the semi-
parametric Filtered Historical Simulation,

ii)	 comparing the results obtained under asymmetric probability 
distributions for return innovations with results under Normal 
and Student-t distributions,

iii)	 using the APARCH volatility specification because of its greater 
flexibility to represent the dynamics of conditional volatility 
(Garcia-Jorcano and Novales, 2017),

iv)	 forecasting VaR and ES over a 10-day horizon as in Basel 
capital requirements and test ES forecasting models at this 
horizon, an analysis that has seldom been considered in the 
financial literature, and

v)	 analyzing the accuracy of risk models for ES forecasting 
during pre-crisis and crisis periods as well as under different 
significance levels. To the best of our knowledge, this is the 
first time that a systematic test of ES forecasting models is 
done considering a variety of probability distributions and 
two alternatives to the standard parametric approach, like 
EVT and the semi-parametric FHS.
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We obtain the following conclusions:

i)	 in standard conditional models fitted to the full distribution of 
return innovations we observe that asymmetric distributions 
play an important role in capturing tail risk at 1-day and 10-
day horizons. This is because the stylized facts of financial 
returns such as volatility clusters, heavy tails and asymmetry 
are suitably captured by these asymmetric distributions.

ii)	 applying EVT to return innovations by modeling the tail with 
a GPD we obtain good ES forecasts at 1- and 10-day horizons 
regardless of the probability distribution used for returns. So, 
it looks as if considering just the return innovations in the 
tail of the distribution is more important than discriminating 
among probability distributions when forecasting ES.

iii)	 using Filtered Historical Simulation can be very useful. First, 
qualitative results under FHS in favor of the use of EVT in 
VaR and ES estimation are consistent with those obtained 
under the parametric approach, which is reassuring. Second, 
ES forecasts are much more similar for different probability 
distributions, as well as between forecasts from EVT-
based models and non-EVT based models. That implies a 
considerable reduction in model risk.

iv)	 even during the crisis period, conditional EVT models are 
more accurate and reliable for predicting asset risk losses 
than conditional models that do not incorporate the EVT 
approach. However, during the crisis there is a systematic 
undervaluation of risk in both classes of models, with a 
number of violations above the theoretical one, suggesting 
that the models do not fully adapt to the occurrence of tail 
events. In general, p-values obtained in all tests during the 
pre-crisis period are higher than those obtained in the crisis 
period, suggesting a higher questioning of the models for ES 
forecasting over the crisis period.
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CHAPTER 1. PROBABILITY-UNBIASED VAR ESTIMATOR

1.1. Introduction

Value at Risk (VaR) has long been the most popular risk measure for the 
risk management of financial asset/portfolios. The Basel requirements 
for risk evaluation require the use of additional measures like Expected 
Shortfall, whose estimation is conditional on a previous VaR estimate. 
Hence, the ability to have good VaR estimates remains a central issue in 
risk management. The parametric approach to VaR estimation proceeds 
in two steps. First, the unknown parameters in the assumed probabili-
ty distribution for portfolio returns are estimated from sample data by 
statistical methods. In the second step, these estimates are treated as the 
true parameter values and they are taken to the mathematical expres-
sion for VaR in the specific model considered to compute the desired 
distribution percentile. This is called a plug-in quantile estimator. It is 
well-known that this procedure is not efficient because the highly non-
linear mapping from model parameters to the risk-measure introduces 
some biases. Statistical experiments show that such bias leads to a sys-
tematic underestimation of risk.

The quality of VaR estimates is controlled by backtesting. The tests to 
be conducted are usually given by the regulator (Basel Committee on 
Banking Supervision (BCBS), 2016). Even under the current emphasis 
on Expected Shortfall (ES) as the main current risk measure sanctioned 
by BCBS, backtesting is required only on VaR. There are two reasons 
for that: 1) a good VaR estimate is a needed condition for a precise  
ES estimate, and 2) the unavailability of simple tools for evaluation 
of ES forecasts. To backtest VaR the so-called failure rate procedure is 
often considered. This procedure focus on the rate of exceptions, i.e. 
ratio of scenarios in which the estimated capital reserve turns out to be 
insufficient. More precisely, given a data sample of size n, we start by 
estimating VaR at level α%. Then, we count how many times the actual 
return over the testing period exceeded the VaR estimate. Under a good 
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estimator we should observe that the relative frequency of exceptions 
should be close to α%.

The backtesting procedure crucially depends on the availability of his-
torical data. This is most problematic if we only have available a small 
sample of historical data on a given asset or portfolio. There are several 
reasons why we have small samples: (i) the risk of the asset/portfolio 
under consideration may be determined by an instrument that has been 
issued recently, (ii) conditions for the evolution of some market may 
have changed and statistical analysis of historical data from the period 
preceding this change can not be expected to give a correct information 
about the probabilities of future changes, and (iii) the access to historical 
data for some instrument may be limited.

The question is: how can we estimate a quantile of an unknown proba-
bility distribution, if all we have is a small sample from this distribution?

The main goal of this chapter is to define a probability-unbiased VaR 
estimator in such a way that it behaves well under various backtesting 
procedures. We follow Francioni and Herzog, “Probability-unbiased Va-
lue-at-Risk estimators” (2012) in using probability unbiasedness as the 
criterion to search for good VaR estimates. VaR performance for each 
procedure is assessed by comparing the observed number of viola-
tions of the quantile estimator with the theoretical frequency. The 
VaR estimator should be unbiased regarding the relative frequen-
cy of violations of the quantile.

We use a non-parametric method (bootstrapping) introduced by 
Francioni and Herzog for the calculation of the probability-unbiased 
VaR estimator for the Normal distribution. These authors show how 
to change the probability level in the plug-in quantile estimator such 
that the resulting plug-in estimator is unbiased in probability. We 
extend their approach to other distributions such as Student-t and 
mixture of Normals. We also show how to use the parametric method 
to calculate the probability-unbiased VaR in the Normal case. This is 
possible because under Normality we can use the probability distri-
butions of the parameter estimates to obtain a closed-form expression 
for the probability-unbiased VaR estimator.
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We show that the use of probability-unbiased VaR avoids the systematic 
underestimation of risk implied by the bias of standard VaR measures in 
small samples. The magnitude of the distortion that needs to be exerted 
on the quantile to move from the plug-in VaR to the probability-unbia-
sed VaR depends on the sample size and on the distribution assumption 
on returns. Our results suggest that using a small sample may easily lead 
to more accurate VaR estimates than a historical estimator based on long 
samples, according to VaR performance measures such that the Probabi-
lity of Exceedance and the Observed Absolute Deviation per year. Short 
samples are more robust to the structural changes that may arise over 
time in financial returns due to trading behavior.

1.2. A review of literature

Estimation of risk measures is an area of highest importance in the 
financial industry since such measures play a major role in the risk-
management and the computation of regulatory capital. For an in-depth 
treatment of the topic, see textbooks by McNeil, Frey and Embrechts 
(2005), and Alexander (2009). In particular, Embrechts and Hofert (2014) 
highlight that a major part of quantitative risk management is actua-
lly of a statistical nature. Statistical aspects in the estimation of risk 
measures have recently raised a lot of attention, see Acerbi and Szekely 
(2007), Davis (2014), Emmer et al. (2015), Du and Escanciano (2016), 
Costanzino and Curran (2015), Fissler et al. (2015) and Ziegel (2016). A 
careful analysis shows that in general risk estimators are biased, and 
they systematically underestimate risk.

Therefore, the occurrence of biases in risk estimation plays an impor-
tant role in practice. The Basel III document suggests to change 10-day 
ahead Value at Risk at 99% confidence level by Expected Shortfall and 
to consider stressed scenarios where the risk level is set at 97.5%. Un-
fortunately, such a correction may reduce the bias only in the right 
scenarios. On the other hand, while the classical (statistical) concept 
of unbiasedness is always desirable from a theoretical point of view, 
it might be not prioritized by financial institutions or regulators, for 
whom backtests are the main source of estimation accuracy. Our goal 
is to obtain probability-unbiased estimators that perform the standard 
backtesting procedure proposed by Basel properly, i.e. with an expected 
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failure rate that is close to the theoretical VaR level α under non-Normal 
distributions.

Surprisingly, it turns out that the statistical properties of risk estimators 
have not yet been analyzed thoroughly. Schaller (2002) discussed the 
relevance of parameter uncertainty for VaR estimation under the assump-
tion of Normally distributed data, proposing a correction to the standard 
VaR estimator. But the author restricts his attention to the uncertain-
ty in the estimation of the variance without considering the uncertainty 
in mean estimation. Francioni and Herzog (2012) introduced the princi-
ple of probability unbiasedness and they derived the distribution of the 
VaR estimator distribution the parametric case for Normally distributed 
data. Their approach consists on computing an appropriate distortion 
for the desired significance level so that the resulting VaR estimate will 
be unbiased in probability. Additionally, they calculate approximate 
VaR confidence bands. Pitera and Schmidt (2016) propose a different 
methodology to obtain an unbiased VaR estimator under Normality. 
They propose a bootstrap algorithm to obtain unbiased estimators by 
distorting the estimated parameters of the distribution instead of the 
VaR significance level (α).

Moreover, as for any other statistical estimator based on a finite amount 
of data, the VaR estimator has a distribution that depends on the obser-
ved realization and the amount of data. This dependence on the number 
of observations has been recognized by others authors, such as Baysal 
and Staum (2008), and Chana and Peng (2006). In these two papers, the 
confidence bands for VaR were derived using Monte Carlo methods. 
Baysal and Staum (2008) introduce probability unbiasedness only with 
respect to the asymptotic distribution of the confidence intervals. Only 
asymptotically probability-unbiased confidence bands were obtained in 
both papers.

We adapt the VaR estimator and the confidence band of the VaR estimator 
such that both become probability unbiased, as Francioni and Herzog 
(2012) suggest for the case of the Normal distribution, extending their 
analysis to distributions different from Normal, such as Student-t and 
Mixtures of two Normal distributions.
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1.3. Quantile or VaR estimator

As specified Francioni and Herzog (2012) we describe the concepts 
associated to the probability unbiased estimation of Value at Risk.
Let us suppose that Χ is an absolutely continuous random variable with 
distribution function Fθ, where θ is a parameter vector. The α quantile Qα 

of Χ is defined as Qα = Fθ
-1

 (α). By definition, the quantile has the proper-
ty that Fθ (Qα) = α. This equation represents the intuitive concept of the 
quantile as a threshold that is exceeded with probability α. The quantile 
Qα of the distribution of returns of a given financial asset or portfolio 
is known as the Value at Risk (VaR) at the level α or at the confidence 
level 1—α. 

We assume that the parameter vector θ can be estimated by any method 
like Maximum Likelihood, Generalized Method of Moments or others in 
such a way that the observed data are well described. We will assume 
that estimator to be at least consistent.

In a general estimation setup, a plug-in estimator for a function g(θ) 
is an estimator obtained by replacing the parameter θ in the function 
by an estimate, that is
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The quantile Qα can be seen as a function of the parameter vector and the 
significance level, Qα= g(θ, α).

The plug-in VaR estimator is the only method to estimate VaR under a 
parametric approach, that is 
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 are unk-
nown. If θ were known, we could directly compute the corresponding 
VaR as a function of θ, g(θ), specifically with Fθ , and we would not need 
to consider the family of VaR, 
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Our aim is to estimate Qα in such a way that the estimator satisfies this 
probabilistic ‘threshold property’ in the mean for a Fθ –distributed ran-
dom variable Χ for all θ, i.e.
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 denotes the expectation operator under probability measure Fθ.
This is a standard unbiasedness condition on the probability of excee-
ding the VaR estimate Qα. That probability is usually checked by bac-
ktesting. Unbiasedness would imply that the VaR estimate Qα will be 
exceeded with an expected probability equal to α.

Definition 1 An estimator g(θ), obtained with sample observations 
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 of g(θ), is said to be probability unbiased with respect to a 
random variable Z with distribution function FZ, if
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, 
is the α -quantile Qα, Z is the next sample observation Z = Xn+1, and  
FZ

 is the probability distribution from which the sample has been ob-
tained. Hence, a probability-unbiased VaR estimator with respect to Z = 
Xn+1 must satisfy
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!! ! !!!! < !! = !  (1) 

 
Unfortunately, under nonlinear mappings of the parameter vector !, as it is the case of the quantile, the 
plug-in procedure generally introduces a small sample bias: ! ! !!"# < !"#! ≠ !. The reason is that 
it treats the estimated parameter vector as deterministic, even though ! is a random variable, a fact that 
must be incorporated into the estimation procedure in order to obtain probability-unbiasedness. As a 
consequence, the equation, !! = !!

!!(!) where !  is an estimator of the parameter ! , is only true 
asymptotically, i.e. as the number of observations goes to infinity, provided the plug-in estimator is 
consistent 
 

!"#! ≡ !!
!→!

!"#! ≡ !! = !!!!(!) 
 
almost surely for each !"Θ, so that this asymptotically unbiased. 
 
To obtain a probability-unbiased estimator for the quantile there are two approaches, 

1. Replacing the level ! by a suitable chosen level !!" to modify the quantile of the estimated 
distribution. The VaR estimator will be 
 

!! = !"#! = ! !, !!" = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
For example, if ! is a Normal distribution, the VaR estimator can be written 
 

!"#! =   ! + !!!!" 
where µμ and ! are the estimated mean and standard deviation, respectively, and !!!" is the inverse 
cumulative distribution function of the standard Normal(0,1) for  !!". 

2. Modifying the vector of estimated parameters ! of the distribution ! to !!" when computing the 
plug-in estimator 
 

!! = !"#! = ! !!", ! = !!!"
!! (!) 

 
If ! is a Normal distribution: !!" = (!!", !!"), and the VaR estimator would then be written as 
follows 
 

!"#! =   !!" + !!"!! 
 
On the other hand, the plug-in estimator, which has been used in the calculation of quantile / VaR 
is 
 

!"#! =   ! + !!! 
 

In this chapter we follow the first of these two approaches to calculate the probability-unbiased VaR, and 
we use the second approach, whenever possible, to graph an approximation of the function ! distorted by 
modifying the parameter  !.  Thus, we will be computing a probability-unbiased estimator of VaR, that is, 
an estimator 
 

!! = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
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. On the 
one hand, parametric methods or classical statistical methods have 
the basis for making inferences about the population in the theoreti-
cal sampling statistical distribution, whose parameters can be estimated 
from the observed sample. On the other hand, there are different pro-
cedures based on non-parametric methods. Those procedures generate 
samples from a set of observations constructing a sample distribution 
that can be used for parameter estimation and confidence intervals. 
Among them, the best known and most commonly used is the boot- 
strap method. The first mention of this method under this name is due to 
Efron (1979), although the same basic ideas came handling for at least a 
decade ago (Simon, 1969). Efron conceived the bootstrap method as an 
extension of “jackknife techniques”, which usually consist in extracting 
samples ever constructed by removing one element of the original sam-
ple to assess the effect on certain statistical (Quenouille, 1949; Tukey, 
1958; and Miller, 1974).

Unlike classical estimation methods, the bootstrap method does not 
make any distributional assumptions for the theoretical statistic. Ins-
tead, the distribution of the statistic is determined by simulating a large 
number of random samples constructed directly from observed data. 
That is, the original sample is used to generate new samples as a ba-
sis for estimating inductively the sampling distribution of the statistic, 
rather than deriving it from a theoretical distribution assumed a priori. 
This method has an immediate predecessor in the techniques of Monte 
Carlo simulation, consisting in extracting a large number of random 
samples from a known population to calculate from them the value of 
the statistic whose sampling distribution is intended to be estimated. 
However, in practice the population is not known and the information 
we have is a sample drawn from it.
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Definition 2 Bootstrapping (bootstrap) is a resampling method or al-
gorithm that consists in generating a large number of resamples using 
sampling with replacement from an original random sample of size n 
that represents the population from which it was extracted. Each resam-
ple is the same size as the original random sample. The resamples serve 
as alternative population samples.

According to the main idea of bootstrap, the procedure involves using the 
sample itself since we consider that it contains basic information about 
the population. Therefore, the suitability of this method will be greater 
when the sample contributes with more information about the popula-
tion. A direct consequence is that the longer the sample size, the better 
the estimation about the sample distribution of a statistic. However, even 
with small samples, between ten and twenty observations, the boots-
trap method can provide correct results (Bickel and Krieger, 1989) while 
being unsuitable for samples with less than five (Chernick, 1999).

1.5. Normal Distribution

The VaR calculated by the parametric approach for a Normal distribu-
tion is 
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Unfortunately, under nonlinear mappings of the parameter vector !, as it is the case of the quantile, the 
plug-in procedure generally introduces a small sample bias: ! ! !!"# < !"#! ≠ !. The reason is that 
it treats the estimated parameter vector as deterministic, even though ! is a random variable, a fact that 
must be incorporated into the estimation procedure in order to obtain probability-unbiasedness. As a 
consequence, the equation, !! = !!

!!(!) where !  is an estimator of the parameter ! , is only true 
asymptotically, i.e. as the number of observations goes to infinity, provided the plug-in estimator is 
consistent 
 

!"#! ≡ !!
!→!

!"#! ≡ !! = !!!!(!) 
 
almost surely for each !"Θ, so that this asymptotically unbiased. 
 
To obtain a probability-unbiased estimator for the quantile there are two approaches, 

1. Replacing the level ! by a suitable chosen level !!" to modify the quantile of the estimated 
distribution. The VaR estimator will be 
 

!! = !"#! = ! !, !!" = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
For example, if ! is a Normal distribution, the VaR estimator can be written 
 

!"#! =   ! + !!!!" 
where µμ and ! are the estimated mean and standard deviation, respectively, and !!!" is the inverse 
cumulative distribution function of the standard Normal(0,1) for  !!". 

2. Modifying the vector of estimated parameters ! of the distribution ! to !!" when computing the 
plug-in estimator 
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follows 
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In this chapter we follow the first of these two approaches to calculate the probability-unbiased VaR, and 
we use the second approach, whenever possible, to graph an approximation of the function ! distorted by 
modifying the parameter  !.  Thus, we will be computing a probability-unbiased estimator of VaR, that is, 
an estimator 
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where !!" is chosen so that equation (1) is fulfilled. 
 

 with Maximum Likelihood 
estimator for the Normal distribution is
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Notice that equation (3) only depends on ! and !, but it does not depend on !, i.e. µμ and !. Non-
dependence on ! arises under the Normal distribution because of its strong invariance structure. Being a 
location-scale distribution, we can reduce it to a standard Normal distribution that does not depend on 
these parameters. This property is important because estimation of the parameter θ make the VaR 
estimator to be just an approximation to the probability-unbiased VaR. 
 
Therefore, the !!" is unique for each sample size (!)  and  for each probability α and it does not vary 
from one sample to another of equal size because the function (3) does not depend on the distribution 
parameters. The VaR obtained with each of these !!" will be probability-unbiased, that is, ! !"# =
!"#. 
 
To sum up, if the probability distribution from which we draw independent sample realizations belongs to 
the location-scale family, then we will be able to find an !!" such that the VaR is unbiased. 
 
Table 1 lists the probabilities !!" obtained from equation (3), as a function of the sample size ! and the 
value of !1. We can see that !!" → ! when !   →   ∞. For instance, under the estimated probability 
distribution for a sample size !   =   20, the 3.82% quantile has a 5% probability of being exceeded by a 
future observation drawn from the full distribution of returns. As we can see, for small sample sizes the 
estimated distribution function from a Normal sample is much heavier tailed than the Normal distribution 
associated to the plug-in estimator. As a consequence, the plug-in VaR estimator underestimates risk. 
 
Table 2 presents the reverse question: What is the ! associated to a given !!"? Now, at 5% significance 
and !   =   20, the plug-in VaR estimate would have a 6.25% probability of being exceeded by a future 
sample observation from the full distribution of returns. We observe that the differences are greater when 
we have small sample sizes and we can also observe that !!" → ! when !   →   ∞. 
 
 

 !  (%) 
n 0.5 1 5 10 
10 0.033 0.154 2.727 7.345 
15 0.105 0.336 3.445 8.239 
20 0.169 0.463 3.821 8.683 
25 0.217 0.552 4.051 8.948 
50 0.340 0.757 4.520 9.476 
100 0.415 0.874 4.759 9.738 
150 0.442 0.915 4.839 9.826 
200 0.456 0.936 4.879 9.869 

 
Table 1: Probabilities α!"(%) to be used to obtain the probability-unbiased VaR!  for different values of α 

and n in the i.i.d. Normal distribution case. 
 

                                                        
1 The probabilities !!" were obtained implicitly, by searching for the !!" that make the double integral in (3) equal to ! for a 
given sample size. Calculations were performed with Mathematica software 9.0. 
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Notice that equation (3) only depends on ! and !, but it does not depend on !, i.e. µμ and !. Non-
dependence on ! arises under the Normal distribution because of its strong invariance structure. Being a 
location-scale distribution, we can reduce it to a standard Normal distribution that does not depend on 
these parameters. This property is important because estimation of the parameter θ make the VaR 
estimator to be just an approximation to the probability-unbiased VaR. 
 
Therefore, the !!" is unique for each sample size (!)  and  for each probability α and it does not vary 
from one sample to another of equal size because the function (3) does not depend on the distribution 
parameters. The VaR obtained with each of these !!" will be probability-unbiased, that is, ! !"# =
!"#. 
 
To sum up, if the probability distribution from which we draw independent sample realizations belongs to 
the location-scale family, then we will be able to find an !!" such that the VaR is unbiased. 
 
Table 1 lists the probabilities !!" obtained from equation (3), as a function of the sample size ! and the 
value of !1. We can see that !!" → ! when !   →   ∞. For instance, under the estimated probability 
distribution for a sample size !   =   20, the 3.82% quantile has a 5% probability of being exceeded by a 
future observation drawn from the full distribution of returns. As we can see, for small sample sizes the 
estimated distribution function from a Normal sample is much heavier tailed than the Normal distribution 
associated to the plug-in estimator. As a consequence, the plug-in VaR estimator underestimates risk. 
 
Table 2 presents the reverse question: What is the ! associated to a given !!"? Now, at 5% significance 
and !   =   20, the plug-in VaR estimate would have a 6.25% probability of being exceeded by a future 
sample observation from the full distribution of returns. We observe that the differences are greater when 
we have small sample sizes and we can also observe that !!" → ! when !   →   ∞. 
 
 

 !  (%) 
n 0.5 1 5 10 
10 0.033 0.154 2.727 7.345 
15 0.105 0.336 3.445 8.239 
20 0.169 0.463 3.821 8.683 
25 0.217 0.552 4.051 8.948 
50 0.340 0.757 4.520 9.476 

100 0.415 0.874 4.759 9.738 
150 0.442 0.915 4.839 9.826 
200 0.456 0.936 4.879 9.869 

 
Table 1: Probabilities α!"(%) to be used to obtain the probability-unbiased VaR!  for different values of α 

and n in the i.i.d. Normal distribution case. 
 

                                                        
1 The probabilities !!" were obtained implicitly, by searching for the !!" that make the double integral in (3) equal to ! for a 
given sample size. Calculations were performed with Mathematica software 9.0. 
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1 The probabilities !!" were obtained implicitly, by searching for the !!" that make the double integral in (3) equal to ! for a 
given sample size. Calculations were performed with Mathematica software 9.0. 
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Table 1: Probabilities αpu(%) to be used to obtain the probability-unbiased VaRα 
for different values of α and n in the i.i.d. Normal distribution case

α (%)

n 0.5 1 5 10

10 0.033 0.154 2.727 7.345

15 0.105 0.336 3.445 8.239

20 0.169 0.463 3.821 8.683

25 0.217 0.552 4.051 8.948

50 0.340 0.757 4.520 9.476

100 0.415 0.874 4.759 9.738

150 0.442 0.915 4.839 9.826

200 0.456 0.936 4.879 9.869

1.  The probabilities αpu were obtained implicitly, by searching for the αpu that make the double integral in 

(3) equal to α for a given sample size. Calculations were performed with Mathematica software 9.0.
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Table 2: Shortfall probabilities α (%) that the next observation will be lower than 
the plug-in VaR estimate Zαpu in the i.i.d. Normal distribution case
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!! ! !!!! < !! = !  (1) 

 
Unfortunately, under nonlinear mappings of the parameter vector !, as it is the case of the quantile, the 
plug-in procedure generally introduces a small sample bias: ! ! !!"# < !"#! ≠ !. The reason is that 
it treats the estimated parameter vector as deterministic, even though ! is a random variable, a fact that 
must be incorporated into the estimation procedure in order to obtain probability-unbiasedness. As a 
consequence, the equation, !! = !!

!!(!) where !  is an estimator of the parameter ! , is only true 
asymptotically, i.e. as the number of observations goes to infinity, provided the plug-in estimator is 
consistent 
 

!"#! ≡ !!
!→!

!"#! ≡ !! = !!!!(!) 
 
almost surely for each !"Θ, so that this asymptotically unbiased. 
 
To obtain a probability-unbiased estimator for the quantile there are two approaches, 

1. Replacing the level ! by a suitable chosen level !!" to modify the quantile of the estimated 
distribution. The VaR estimator will be 
 

!! = !"#! = ! !, !!" = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
For example, if ! is a Normal distribution, the VaR estimator can be written 
 

!"#! =   ! + !!!!" 
where µμ and ! are the estimated mean and standard deviation, respectively, and !!!" is the inverse 
cumulative distribution function of the standard Normal(0,1) for  !!". 

2. Modifying the vector of estimated parameters ! of the distribution ! to !!" when computing the 
plug-in estimator 
 

!! = !"#! = ! !!", ! = !!!"
!! (!) 

 
If ! is a Normal distribution: !!" = (!!", !!"), and the VaR estimator would then be written as 
follows 
 

!"#! =   !!" + !!"!! 
 
On the other hand, the plug-in estimator, which has been used in the calculation of quantile / VaR 
is 
 

!"#! =   ! + !!! 
 

In this chapter we follow the first of these two approaches to calculate the probability-unbiased VaR, and 
we use the second approach, whenever possible, to graph an approximation of the function ! distorted by 
modifying the parameter  !.  Thus, we will be computing a probability-unbiased estimator of VaR, that is, 
an estimator 
 

!! = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
 

 (%)

n 0.5 1 5 10

10 1.820 2.686 7.563 12.639

15 1.288 2.043 6.678 11.752

20 1.056 1.751 6.247 11.312

25 0.928 1.585 5.992 11.048

50 0.697 1.277 5.490 10.523

100 0.594 1.134 5.243 10.261

150 0.562 1.089 5.162 10.174

200 0.546 1.066 5.121 10.130

Figure 1 graphs the distortion function for different sample sizes (grey 
line). It corroborates the fact that, as we have more observations, the 
correction in the probability level is smaller and the distortion function 
converges to the identity (black line). This distortion function describes 
how probabilities need to be changed in the plug-in quantile estimator 
such that the plug-in estimator becomes probability-unbiased. Figure 
2 shows the distortion of the quantiles of the standard Normal distri-
bution function which describes how the plug-in estimate of the cu-
mulative density function has to be changed for a given sample size n 
such that the estimate becomes probability-unbiased. In both figures, 
we only represent the left extreme quantiles, but it would be possible 
to enlarge the graph to represent the entire distribution. In Figure 2 we 
observe that for more extreme quantiles the distortion is greater, i.e. 
the differences between α and 
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 is always lower 
than α, in other words, probability-unbiased VaR is greater (in absolute 
value) than plug-in VaR. The latter underestimates the extreme events 
and, therefore, is not an appropriate method to estimate risk measure 
with small samples.
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Figure 1: Distortion function for the Normal distribution calculated with the para-
metric method. The diagonal (black line) represents no distortion

Figure 2: The quantiles of the Normal cdf versus the quantiles of the distorted 
Normal cdf calculated with the parametric method. The diagonal (black line) 
represents no distortion
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1.5.1. Parametric probability-unbiased VaR estimator for a Normal 
distribution

We now turn to the estimation of VaR itself. We apply the first ap-
proach described in Section 1.3 to estimate the probability-unbiased 
VaR, which implies a modification of the quantile, replacing α by 
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Table 3 shows the probability-unbiased 
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We now turn to the estimation of VaR itself. We apply the first approach described in Section 1.3 to 
estimate the probability-unbiased VaR, which implies a modification of the quantile, replacing ! by !!". 
Table 3 shows the probability-unbiased !"#!  (!"#!") and the plug-in  !"#!  (!"#!"#$!!") obtained for 
different sample sizes and α’s. We can see that plug-in !"#!  underestimates risk, indicating smaller 
losses than we should really expect with !% probability. Thus, for instance, for a random sample of size 
25, the maximum expected loss with 95% probability or, equivalently, the minimum loss with a 5% is not 
1.844, but 1.949. 
 
The calculation of probability-unbiased VaR is particularly relevant for small sample sizes, when the 
difference in the estimation of VaR is higher than for large samples, for which the probability-unbiased 
!"#!  and the plug-in !"#!  are very similar. 
 
Now, we follow the second approach described in Section 1.3, to obtain the probability- unbiased VaR 
estimator by calculating the standard deviation of !!" the distorted distribution function !. 
 
If ! is a Normal distribution, the probability-unbiased VaR estimator can be written in two alternative 
ways: 
 

!"#! = !!" + !!"!! = ! + !!!!" 
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 underestimates risk, indicating smaller losses than we 
should really expect with α% probability. Thus, for instance, for a random 
sample of size 25, the maximum expected loss with 95% probability or, 
equivalently, the minimum loss with a 5% is not 1.844, but 1.949.
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small sample sizes, when the difference in the estimation of VaR is hig-
her than for large samples, for which the probability-unbiased 
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the probability-unbiased VaR estimator by calculating the standard de-
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 the distorted distribution function F.

If F is a Normal distribution, the probability-unbiased VaR estimator can 
be written in two alternative ways:
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Table 3: Probability-unbiased 
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 !"#!" !"#!"#$!!" 
n 0.5 1 5 10 0.5 1 5 10 
10 -3.227 -2.786 -1.768 -1.305 -2.409 -2.165 -1.496 -1.139 
15 -2.796 -2.440 -1.570 -1.150 -2.309 -2.065 -1.400 -1.045 
20 -3.206 -2.866 -2.011 -1.587 -2.839 -2.582 -1.880 -1.506 
25 -3.117 -2.789 -1.949 -1.527 -2.825 -2.562 -1.844 -1.461 
50 -2.925 -2.624 -1.827 -1.415 -2.783 -2.513 -1.775 -1.382 

100 -2.546 -2.307 -1.666 -1.329 -2.488 -2.262 -1.645 -1.316 
150 -2.621 -2.374 -1.705 -1.352 -2.581 -2.342 -1.690 -1.343 
200 -2.393 -2.165 -1.547 -1.220 -2.365 -2.143 -1.537 -1.213 

 
Table 3: Probability-unbiased !"#!versus plug-in !"#!  in the case of Normal(0,1). 

 
that illustrate the two equivalent approaches to probability-unbiased VaR estimation: either we distort the 
quantile and use the estimated parameters or we maintain the original quantile while distorting the 
estimated parameters. This equation also shows that once we have calculated !!"  we can obtain !!!!" 
and viceversa. 
 
Since the mean of the distribution is very low in high frequency returns and it is estimated with very low 
precision, we can consider it to be the same for the distorted distribution as for the original distribution, 
i.e. µμ!"   =   µμ. Then, we will calculate the standard deviation !!" of the distorted distribution function 
implicitly so that the previous equation holds. That standard deviation will be different for every ! and 
for each sample size (!) because !"#!  also changes with ! and with !. 
 
Table 4 shows the !!!  values obtained for different α and n. Notice that !!"  is greater for small sample 
sizes suggesting the heavier tails of the distorted distribution. For a given sample size, we obtain larger 
differences between !  and !!"    for the more extreme quantiles. For a given ! , we obtain greater 
differences between ! and !!" for small sample sizes. As the sample size increases the !!"’s move closer 
to the sample standard deviation (!   =   !) for any ! and, therefore, closer to the population standard 
deviation, 1. At !   =   200 we see a distortion produced by estimating the mean. Had we set µμ   =   0 when 
calculating the parametric VaR estimate, we would get !!"  converging to !  and hence, to ! , the 
population standard deviation, which is equal to 1, as the sample size increases. 
 
Figure 3 shows the true density function of a random variable N(0,1) (blue line), the density function of 
the Normal distribution with the parameters estimated from a random sample of size 15 extracted from a 
N(0,1) (red line), and the density function of the distorted estimated distribution function using the !!" 
estimate (green line). We can see that the distorted distribution function has heavier tails, which should 
allow for a better fit to most asset returns.  The probability-unbiased !"# (green point) indicates higher 
losses than plug-in !"# (red point).  In other words, the plug-in estimator underestimates risk. This will 
generally be the case with small size samples. Besides, the smaller the sample size the greater the 
correction or adjustment needed on the probability distribution. 
 
 
 
 
 
 
 

 versus plug-in 
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!! ! !!!! < !! = !  (1) 

 
Unfortunately, under nonlinear mappings of the parameter vector !, as it is the case of the quantile, the 
plug-in procedure generally introduces a small sample bias: ! ! !!"# < !"#! ≠ !. The reason is that 
it treats the estimated parameter vector as deterministic, even though ! is a random variable, a fact that 
must be incorporated into the estimation procedure in order to obtain probability-unbiasedness. As a 
consequence, the equation, !! = !!

!!(!) where !  is an estimator of the parameter ! , is only true 
asymptotically, i.e. as the number of observations goes to infinity, provided the plug-in estimator is 
consistent 
 

!"#! ≡ !!
!→!

!"#! ≡ !! = !!!!(!) 
 
almost surely for each !"Θ, so that this asymptotically unbiased. 
 
To obtain a probability-unbiased estimator for the quantile there are two approaches, 

1. Replacing the level ! by a suitable chosen level !!" to modify the quantile of the estimated 
distribution. The VaR estimator will be 
 

!! = !"#! = ! !, !!" = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
For example, if ! is a Normal distribution, the VaR estimator can be written 
 

!"#! =   ! + !!!!" 
where µμ and ! are the estimated mean and standard deviation, respectively, and !!!" is the inverse 
cumulative distribution function of the standard Normal(0,1) for  !!". 

2. Modifying the vector of estimated parameters ! of the distribution ! to !!" when computing the 
plug-in estimator 
 

!! = !"#! = ! !!", ! = !!!"
!! (!) 

 
If ! is a Normal distribution: !!" = (!!", !!"), and the VaR estimator would then be written as 
follows 
 

!"#! =   !!" + !!"!! 
 
On the other hand, the plug-in estimator, which has been used in the calculation of quantile / VaR 
is 
 

!"#! =   ! + !!! 
 

In this chapter we follow the first of these two approaches to calculate the probability-unbiased VaR, and 
we use the second approach, whenever possible, to graph an approximation of the function ! distorted by 
modifying the parameter  !.  Thus, we will be computing a probability-unbiased estimator of VaR, that is, 
an estimator 
 

!! = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
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Figure 2: The quantiles of the Normal cdf versus the quantiles of the distorted Normal cdf calculated with 
the parametric method. The diagonal (black line) represents no distortion. 

 
1.5.1. Parametric probability-unbiased VaR estimator for a Normal distribution 

 
We now turn to the estimation of VaR itself. We apply the first approach described in Section 1.3 to 
estimate the probability-unbiased VaR, which implies a modification of the quantile, replacing ! by !!". 
Table 3 shows the probability-unbiased !"#!  (!"#!") and the plug-in  !"#!  (!"#!"#$!!") obtained for 
different sample sizes and α’s. We can see that plug-in !"#!  underestimates risk, indicating smaller 
losses than we should really expect with !% probability. Thus, for instance, for a random sample of size 
25, the maximum expected loss with 95% probability or, equivalently, the minimum loss with a 5% is not 
1.844, but 1.949. 
 
The calculation of probability-unbiased VaR is particularly relevant for small sample sizes, when the 
difference in the estimation of VaR is higher than for large samples, for which the probability-unbiased 
!"#!  and the plug-in !"#!  are very similar. 
 
Now, we follow the second approach described in Section 1.3, to obtain the probability- unbiased VaR 
estimator by calculating the standard deviation of !!" the distorted distribution function !. 
 
If ! is a Normal distribution, the probability-unbiased VaR estimator can be written in two alternative 
ways: 
 

!"#! = !!" + !!"!! = ! + !!!!" 
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Table 4: Estimated standard deviations for the distorted distribution function

α(%)

n 0.5 1 5 10

10 1.299 1.248 1.147 1.111

15 1.165 1.137 1.079 1.058

20 1.172 1.152 1.109 1.093

25 1.167 1.151 1.118 1.105

50 1.138 1.130 1.114 1.108

100 0.928 0.925 0.919 0.916

150 0.972 0.970 0.966 0.964

200 0.901 0.899 0.8965 0.895

Figure 3: The true N(0,1) pdf (solid line), the plug-in pdf (dashed line) and the 
pdf of the unbiased cdf (dotted line).  On the horizontal axis the data points 
for the true 
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25 -3.117 -2.789 -1.949 -1.527 -2.825 -2.562 -1.844 -1.461 
50 -2.925 -2.624 -1.827 -1.415 -2.783 -2.513 -1.775 -1.382 

100 -2.546 -2.307 -1.666 -1.329 -2.488 -2.262 -1.645 -1.316 
150 -2.621 -2.374 -1.705 -1.352 -2.581 -2.342 -1.690 -1.343 
200 -2.393 -2.165 -1.547 -1.220 -2.365 -2.143 -1.537 -1.213 

 
Table 3: Probability-unbiased !"#!versus plug-in !"#!  in the case of Normal(0,1). 

 
that illustrate the two equivalent approaches to probability-unbiased VaR estimation: either we distort the 
quantile and use the estimated parameters or we maintain the original quantile while distorting the 
estimated parameters. This equation also shows that once we have calculated !!"  we can obtain !!!!" 
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Since the mean of the distribution is very low in high frequency returns and it is estimated with very low 
precision, we can consider it to be the same for the distorted distribution as for the original distribution, 
i.e. µμ!"   =   µμ. Then, we will calculate the standard deviation !!" of the distorted distribution function 
implicitly so that the previous equation holds. That standard deviation will be different for every ! and 
for each sample size (!) because !"#!  also changes with ! and with !. 
 
Table 4 shows the !!!  values obtained for different α and n. Notice that !!"  is greater for small sample 
sizes suggesting the heavier tails of the distorted distribution. For a given sample size, we obtain larger 
differences between !  and !!"    for the more extreme quantiles. For a given ! , we obtain greater 
differences between ! and !!" for small sample sizes. As the sample size increases the !!"’s move closer 
to the sample standard deviation (!   =   !) for any ! and, therefore, closer to the population standard 
deviation, 1. At !   =   200 we see a distortion produced by estimating the mean. Had we set µμ   =   0 when 
calculating the parametric VaR estimate, we would get !!"  converging to !  and hence, to ! , the 
population standard deviation, which is equal to 1, as the sample size increases. 
 
Figure 3 shows the true density function of a random variable N(0,1) (blue line), the density function of 
the Normal distribution with the parameters estimated from a random sample of size 15 extracted from a 
N(0,1) (red line), and the density function of the distorted estimated distribution function using the !!" 
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allow for a better fit to most asset returns.  The probability-unbiased !"# (green point) indicates higher 
losses than plug-in !"# (red point).  In other words, the plug-in estimator underestimates risk. This will 
generally be the case with small size samples. Besides, the smaller the sample size the greater the 
correction or adjustment needed on the probability distribution. 
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Correcciones que se interesan 
 
- Pág. 21: En la línea 5, donde pone, !! = !!!!(!)!! , debe poner, !! = !!!!(!)  
- Pág. 24: En la línea 1, la ecuación !! = !!

!!(!!") no se ve correctamente. 
- Pág. 28: En el Título de la Table 1, separar “Probabilities !!" % " y “to”. 
- Pág. 32: Sustituir el último párrafo por el siguiente, 
 
Figure 3 shows the true density function of a random variable N(0,1) (solid line), the density function of the 
Normal distribution with the parameters estimated from a random sample of size 15 extracted from a N(0,1) 
(dashed line), and the density function of the distorted estimated distribution function using the !!" estimate 
(dotted line). We can see that the distorted distribution function has heavier tails, which should allow for a 
better fit to most asset returns. The probability-unbiased !"# (black circle) indicates higher losses than 
plug-in !"# (black triangle). In other words, the plug-in estimator underestimates risk. This will generally 
be the case with small size samples. Besides, the smaller the sample size the greater the correction or 
adjustment needed on the probability distribution. 
 
- Pág. 33: La Figure 3 no se comprende en tonalidades de color gris, sustituirla (incluido su título) por 
la siguiente, 
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- Pág. 34: Sustituir el primer párrafo por el siguiente, 
 
Figure 4 shows the cumulative distribution function of N(0,1) (solid line), the plug-in cumulative 
distribution function (dashed line) and the probability-unbiased cumulative distribution function (dotted 
line). It also displays VaR estimates at 5% significance level. As Figure 3, these representations are based on 
the estimates obtained from a random sample of size 15. The smaller the sample size the larger the distortion 
in the plug-in distribution function. 
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Figure 4 shows the cumulative distribution function of N(0,1) (solid 
line), the plug-in cumulative distribution function (dashed line) and the 
unbiased cumulative distribution function (dotted line). It also displays 
VaR estimates at 5% significance level. As Figure 3, these representa-
tions are based on the estimates obtained from a random sample of size 
15. The smaller the sample size the larger the distortion in the plug-in 
distribution function.

Figure 4: The true N(0,1) cdf (solid line), the plug-in cdf (dashed line) and the 
unbiased cdf (dotted line). On the horizontal axis the data points for the true 
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Figure 4: The true N(0,1) cdf (solid line), the plug-in cdf (dashed line) and the unbiased cdf (dotted line). On 
the horizontal axis the data points for the true !"#!% (black square), the plug-in !"#!% (black triangle) and 

the unbiased !"#!% (black circle) are plotted. 
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Figure 5: Enlarged left tail of the true N(0,1) pdf (solid line), the plug-in pdf (dashed line) and the pdf of the 

unbiased cdf (dotted line) for different sample sizes. On the horizontal axis the data points for the true 
!"#!% (black square), the plug-in !"#!% (black triangle) and the probability-unbiased !"#!% (black circle) 

are plotted. 
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Figure 2: The quantiles of the Normal cdf versus the quantiles of the distorted Normal cdf calculated with 
the parametric method. The diagonal (black line) represents no distortion. 

 
1.5.1. Parametric probability-unbiased VaR estimator for a Normal distribution 

 
We now turn to the estimation of VaR itself. We apply the first approach described in Section 1.3 to 
estimate the probability-unbiased VaR, which implies a modification of the quantile, replacing ! by !!". 
Table 3 shows the probability-unbiased !"#!  (!"#!") and the plug-in  !"#!  (!"#!"#$!!") obtained for 
different sample sizes and α’s. We can see that plug-in !"#!  underestimates risk, indicating smaller 
losses than we should really expect with !% probability. Thus, for instance, for a random sample of size 
25, the maximum expected loss with 95% probability or, equivalently, the minimum loss with a 5% is not 
1.844, but 1.949. 
 
The calculation of probability-unbiased VaR is particularly relevant for small sample sizes, when the 
difference in the estimation of VaR is higher than for large samples, for which the probability-unbiased 
!"#!  and the plug-in !"#!  are very similar. 
 
Now, we follow the second approach described in Section 1.3, to obtain the probability- unbiased VaR 
estimator by calculating the standard deviation of !!" the distorted distribution function !. 
 
If ! is a Normal distribution, the probability-unbiased VaR estimator can be written in two alternative 
ways: 
 

!"#! = !!" + !!"!! = ! + !!!!" 
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5%. 
These Figures show the convergence of the plug-in distribution and the 
probability-unbiased distribution to the true distribution as the sample 
size increases.
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Figure 5: Enlarged left tail of the true N(0,1) pdf (solid line), the plug-in pdf (dashed 
line) and the pdf of the unbiased cdf (dotted line) for different sample sizes. On the 
horizontal axis the data points for the true 
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100 -2.546 -2.307 -1.666 -1.329 -2.488 -2.262 -1.645 -1.316 
150 -2.621 -2.374 -1.705 -1.352 -2.581 -2.342 -1.690 -1.343 
200 -2.393 -2.165 -1.547 -1.220 -2.365 -2.143 -1.537 -1.213 

 
Table 3: Probability-unbiased !"#!versus plug-in !"#!  in the case of Normal(0,1). 

 
that illustrate the two equivalent approaches to probability-unbiased VaR estimation: either we distort the 
quantile and use the estimated parameters or we maintain the original quantile while distorting the 
estimated parameters. This equation also shows that once we have calculated !!"  we can obtain !!!!" 
and viceversa. 
 
Since the mean of the distribution is very low in high frequency returns and it is estimated with very low 
precision, we can consider it to be the same for the distorted distribution as for the original distribution, 
i.e. µμ!"   =   µμ. Then, we will calculate the standard deviation !!" of the distorted distribution function 
implicitly so that the previous equation holds. That standard deviation will be different for every ! and 
for each sample size (!) because !"#!  also changes with ! and with !. 
 
Table 4 shows the !!!  values obtained for different α and n. Notice that !!"  is greater for small sample 
sizes suggesting the heavier tails of the distorted distribution. For a given sample size, we obtain larger 
differences between !  and !!"    for the more extreme quantiles. For a given ! , we obtain greater 
differences between ! and !!" for small sample sizes. As the sample size increases the !!"’s move closer 
to the sample standard deviation (!   =   !) for any ! and, therefore, closer to the population standard 
deviation, 1. At !   =   200 we see a distortion produced by estimating the mean. Had we set µμ   =   0 when 
calculating the parametric VaR estimate, we would get !!"  converging to !  and hence, to ! , the 
population standard deviation, which is equal to 1, as the sample size increases. 
 
Figure 3 shows the true density function of a random variable N(0,1) (blue line), the density function of 
the Normal distribution with the parameters estimated from a random sample of size 15 extracted from a 
N(0,1) (red line), and the density function of the distorted estimated distribution function using the !!" 
estimate (green line). We can see that the distorted distribution function has heavier tails, which should 
allow for a better fit to most asset returns.  The probability-unbiased !"# (green point) indicates higher 
losses than plug-in !"# (red point).  In other words, the plug-in estimator underestimates risk. This will 
generally be the case with small size samples. Besides, the smaller the sample size the greater the 
correction or adjustment needed on the probability distribution. 
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Figure 4: The true N(0,1) cdf (solid line), the plug-in cdf (dashed line) and the unbiased cdf (dotted line). On 
the horizontal axis the data points for the true !"#!% (black square), the plug-in !"#!% (black triangle) and 

the unbiased !"#!% (black circle) are plotted. 
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Figure 5: Enlarged left tail of the true N(0,1) pdf (solid line), the plug-in pdf (dashed line) and the pdf of the 

unbiased cdf (dotted line) for different sample sizes. On the horizontal axis the data points for the true 
!"#!% (black square), the plug-in !"#!% (black triangle) and the probability-unbiased !"#!% (black circle) 

are plotted. 

 

Figure 6: Enlarged left tail of the true N(0,1) cdf (solid line), the plug-in cdf (dashed 
line) and the unbiased cdf (dotted line) for different sample sizes. On the horizontal 
axis the data points for the true 
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Figure 6: Enlarged left tail of the true N(0,1) cdf (solid line), the plug-in cdf (dashed line) and the unbiased 
cdf (dotted line) for different sample sizes. On the horizontal axis the data points for the true !"#!% (black 

square), the plug-in !"#!% (black triangle) and the unbiased !"#!% (black circle) are plotted. 
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1.5.2.	A comparison of parametric estimates of probability-unbiased 
VaR and plug-in VaR under Normality

We now compare the exceedance probabilities obtained from probability-
unbiased VaR and plug-in VaR. We simulate the estimation of the plug-in 
VaR estimator and the probability- unbiased VaR estimator and calculate the 
exceedance probabilities. According to the argument in the previous sec-
tion, we expect to obtain a number of exceedances for probability-unbiased 
VaR to be close to the theoretical α regardless of the sample size considered.

The Monte-Carlo exercise with S simulations is performed using the 
following steps:

1.	 Set the counter of the simulation s = 0.
2.	 Increment the counter of the simulation s = s + 1.
3.	 Simulate normally distributed data with n + 1 observations and 

predefined values of µ and σ.
4.	 Estimate the mean and the standard deviation based on the first 

n data points.
5.	 Calculate the plug-in VaR estimator. Calculate the probability-

unbiased VaR estimator using the 
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almost surely for each !"Θ, so that this asymptotically unbiased. 
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1. Replacing the level ! by a suitable chosen level !!" to modify the quantile of the estimated 
distribution. The VaR estimator will be 
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where !!" is chosen so that equation (1) is fulfilled. 
For example, if ! is a Normal distribution, the VaR estimator can be written 
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we use the second approach, whenever possible, to graph an approximation of the function ! distorted by 
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where !!" is chosen so that equation (1) is fulfilled. 
 

 from Table 1 for the µ and 
σ estimates in step 4.

6.	 Check if the n + 1 data point is smaller than the plug-in 
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1.5.1. Parametric probability-unbiased VaR estimator for a Normal distribution 

 
We now turn to the estimation of VaR itself. We apply the first approach described in Section 1.3 to 
estimate the probability-unbiased VaR, which implies a modification of the quantile, replacing ! by !!". 
Table 3 shows the probability-unbiased !"#!  (!"#!") and the plug-in  !"#!  (!"#!"#$!!") obtained for 
different sample sizes and α’s. We can see that plug-in !"#!  underestimates risk, indicating smaller 
losses than we should really expect with !% probability. Thus, for instance, for a random sample of size 
25, the maximum expected loss with 95% probability or, equivalently, the minimum loss with a 5% is not 
1.844, but 1.949. 
 
The calculation of probability-unbiased VaR is particularly relevant for small sample sizes, when the 
difference in the estimation of VaR is higher than for large samples, for which the probability-unbiased 
!"#!  and the plug-in !"#!  are very similar. 
 
Now, we follow the second approach described in Section 1.3, to obtain the probability- unbiased VaR 
estimator by calculating the standard deviation of !!" the distorted distribution function !. 
 
If ! is a Normal distribution, the probability-unbiased VaR estimator can be written in two alternative 
ways: 
 

!"#! = !!" + !!"!! = ! + !!!!" 
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 estimators. When the data point is 
smaller (VaR exceedance) record a 1, otherwise a 0.

7.	 Return to step 2 while s < S.
8.	 Calculate the exceedance probability by summing the recorded 

values and dividing them by the number of simulations S.

The results in Table 5 for samples of size 10, 15, 20 and 25, for 
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 5%, with µ = 0, σ = 1 and S = 100 000, show that the probability 
of a VaR exceedance from the probability-unbiased estimator is close to 
the theoretical values of 1% and 5%.

However, the probability of a VaR exceedance for the plug-in VaR differs 
than the theoretical probability. This confirms the results presented in 
Table 1. As the sample size increases, the probability of an excess from 
the plug-in VaR estimator calculated from the simulations approaches the 
theoretical value. For the probability-unbiased VaR estimator, probability 
remains similar to the theoretical probability for all sample sizes.
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Table 5: The shortfall probabilities α% with which the next observation is always 
lower than the plug-in 
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 !"#!" !"#!"#$!!" 
n 0.5 1 5 10 0.5 1 5 10 
10 -3.227 -2.786 -1.768 -1.305 -2.409 -2.165 -1.496 -1.139 
15 -2.796 -2.440 -1.570 -1.150 -2.309 -2.065 -1.400 -1.045 
20 -3.206 -2.866 -2.011 -1.587 -2.839 -2.582 -1.880 -1.506 
25 -3.117 -2.789 -1.949 -1.527 -2.825 -2.562 -1.844 -1.461 
50 -2.925 -2.624 -1.827 -1.415 -2.783 -2.513 -1.775 -1.382 

100 -2.546 -2.307 -1.666 -1.329 -2.488 -2.262 -1.645 -1.316 
150 -2.621 -2.374 -1.705 -1.352 -2.581 -2.342 -1.690 -1.343 
200 -2.393 -2.165 -1.547 -1.220 -2.365 -2.143 -1.537 -1.213 

 
Table 3: Probability-unbiased !"#!versus plug-in !"#!  in the case of Normal(0,1). 

 
that illustrate the two equivalent approaches to probability-unbiased VaR estimation: either we distort the 
quantile and use the estimated parameters or we maintain the original quantile while distorting the 
estimated parameters. This equation also shows that once we have calculated !!"  we can obtain !!!!" 
and viceversa. 
 
Since the mean of the distribution is very low in high frequency returns and it is estimated with very low 
precision, we can consider it to be the same for the distorted distribution as for the original distribution, 
i.e. µμ!"   =   µμ. Then, we will calculate the standard deviation !!" of the distorted distribution function 
implicitly so that the previous equation holds. That standard deviation will be different for every ! and 
for each sample size (!) because !"#!  also changes with ! and with !. 
 
Table 4 shows the !!!  values obtained for different α and n. Notice that !!"  is greater for small sample 
sizes suggesting the heavier tails of the distorted distribution. For a given sample size, we obtain larger 
differences between !  and !!"    for the more extreme quantiles. For a given ! , we obtain greater 
differences between ! and !!" for small sample sizes. As the sample size increases the !!"’s move closer 
to the sample standard deviation (!   =   !) for any ! and, therefore, closer to the population standard 
deviation, 1. At !   =   200 we see a distortion produced by estimating the mean. Had we set µμ   =   0 when 
calculating the parametric VaR estimate, we would get !!"  converging to !  and hence, to ! , the 
population standard deviation, which is equal to 1, as the sample size increases. 
 
Figure 3 shows the true density function of a random variable N(0,1) (blue line), the density function of 
the Normal distribution with the parameters estimated from a random sample of size 15 extracted from a 
N(0,1) (red line), and the density function of the distorted estimated distribution function using the !!" 
estimate (green line). We can see that the distorted distribution function has heavier tails, which should 
allow for a better fit to most asset returns.  The probability-unbiased !"# (green point) indicates higher 
losses than plug-in !"# (red point).  In other words, the plug-in estimator underestimates risk. This will 
generally be the case with small size samples. Besides, the smaller the sample size the greater the 
correction or adjustment needed on the probability distribution. 
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 in the Monte-Carlo 
simulation for the Normal distribution

n 1% plug-in 1% pu 5% plug-in 5% pu

10 2.674 0.985 7.567 5.015

15 2.063 0.953 6.748 5.047

20 1.825 1.028 6.268 5.038

25 1.608 0.999 5.978 4.930

1.5.3.	Non-parametric (Bootstrapping) estimation of probability-
unbiased VaR

In the previous section we have calculated 
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Unfortunately, under nonlinear mappings of the parameter vector !, as it is the case of the quantile, the 
plug-in procedure generally introduces a small sample bias: ! ! !!"# < !"#! ≠ !. The reason is that 
it treats the estimated parameter vector as deterministic, even though ! is a random variable, a fact that 
must be incorporated into the estimation procedure in order to obtain probability-unbiasedness. As a 
consequence, the equation, !! = !!

!!(!) where !  is an estimator of the parameter ! , is only true 
asymptotically, i.e. as the number of observations goes to infinity, provided the plug-in estimator is 
consistent 
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almost surely for each !"Θ, so that this asymptotically unbiased. 
 
To obtain a probability-unbiased estimator for the quantile there are two approaches, 

1. Replacing the level ! by a suitable chosen level !!" to modify the quantile of the estimated 
distribution. The VaR estimator will be 
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where !!" is chosen so that equation (1) is fulfilled. 
For example, if ! is a Normal distribution, the VaR estimator can be written 
 

!"#! =   ! + !!!!" 
where µμ and ! are the estimated mean and standard deviation, respectively, and !!!" is the inverse 
cumulative distribution function of the standard Normal(0,1) for  !!". 

2. Modifying the vector of estimated parameters ! of the distribution ! to !!" when computing the 
plug-in estimator 
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If ! is a Normal distribution: !!" = (!!", !!"), and the VaR estimator would then be written as 
follows 
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On the other hand, the plug-in estimator, which has been used in the calculation of quantile / VaR 
is 
 

!"#! =   ! + !!! 
 

In this chapter we follow the first of these two approaches to calculate the probability-unbiased VaR, and 
we use the second approach, whenever possible, to graph an approximation of the function ! distorted by 
modifying the parameter  !.  Thus, we will be computing a probability-unbiased estimator of VaR, that is, 
an estimator 
 

!! = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
 

analytically, corrobo-
rating that the exceedance probabilities obtained from probability-un-
biased VaR are closer to theoretical α than those obtained from plug-in 
VaR for all sample sizes. We lack a closed-form solution for unbiased 
estimators for other distributions, such as Student-t and Mixture of two 
Normals, because the statistical distributions of the sample parameters 
are unknown, so that the bootstrap algorithm proposed by FH is extre-
mely useful. In this subsection, we use that algorithm to calculate 
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for Normal distributions, as FH propose, and we compare the results 
obtained with this method and the analytical method.

The algorithm proposed by FH when sampling from a Normal distribu-
tion replaces the level α by a suitably chosen level 
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 so as to mini-
mize the average distance between the bootstrapped estimators and α. 
The 

13 
 

!! ! !!!! < !! = !  (1) 

 
Unfortunately, under nonlinear mappings of the parameter vector !, as it is the case of the quantile, the 
plug-in procedure generally introduces a small sample bias: ! ! !!"# < !"#! ≠ !. The reason is that 
it treats the estimated parameter vector as deterministic, even though ! is a random variable, a fact that 
must be incorporated into the estimation procedure in order to obtain probability-unbiasedness. As a 
consequence, the equation, !! = !!

!!(!) where !  is an estimator of the parameter ! , is only true 
asymptotically, i.e. as the number of observations goes to infinity, provided the plug-in estimator is 
consistent 
 

!"#! ≡ !!
!→!

!"#! ≡ !! = !!!!(!) 
 
almost surely for each !"Θ, so that this asymptotically unbiased. 
 
To obtain a probability-unbiased estimator for the quantile there are two approaches, 

1. Replacing the level ! by a suitable chosen level !!" to modify the quantile of the estimated 
distribution. The VaR estimator will be 
 

!! = !"#! = ! !, !!" = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
For example, if ! is a Normal distribution, the VaR estimator can be written 
 

!"#! =   ! + !!!!" 
where µμ and ! are the estimated mean and standard deviation, respectively, and !!!" is the inverse 
cumulative distribution function of the standard Normal(0,1) for  !!". 

2. Modifying the vector of estimated parameters ! of the distribution ! to !!" when computing the 
plug-in estimator 
 

!! = !"#! = ! !!", ! = !!!"
!! (!) 

 
If ! is a Normal distribution: !!" = (!!", !!"), and the VaR estimator would then be written as 
follows 
 

!"#! =   !!" + !!"!! 
 
On the other hand, the plug-in estimator, which has been used in the calculation of quantile / VaR 
is 
 

!"#! =   ! + !!! 
 

In this chapter we follow the first of these two approaches to calculate the probability-unbiased VaR, and 
we use the second approach, whenever possible, to graph an approximation of the function ! distorted by 
modifying the parameter  !.  Thus, we will be computing a probability-unbiased estimator of VaR, that is, 
an estimator 
 

!! = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
 

 obtained through resampling will change with the sample size 
(n), the significance level α and the observed values in the sample. The 
algorithm approximates the 
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 corrects the fact that we do not obser-
ve infinite realizations. For a large number of observations the plug-in 
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The plug-in estimator has good properties only asymptotically, while the 
probability-unbiased estimator is a good estimator even in short samples.
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Suppose we have a random sample of size n drawn from a distribution 
Fθ. Then, we generate B resamples of the same size n. These resamples are 
obtained by sampling with replacement. The steps to be performed are:

1.	 From observed values X1, ..., Xn ~
i.i.d. Fθ

2.	 Estimate θ = θ(X1, ..., Xn)
3.	 For i=1:B

Samples X1, ..., Xn from Fθ̂
2

Estimate θ̂*
i

Find the 
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  because of its simplicity although it requires that the distribution 

has a variance greater than 13. For each resample, we estimate the number of degrees of freedom, which is 
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3 An alternative estimator might combine two different GMM estimators based on the variance and the kurtosis of the sample. 
However, often the number of estimated degrees of freedom is below 4, not allowing for the use of the kurtosis estimator. 
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 obtain the probability-unbiased VaR estimator.

We start with a random sample of size n generated from a Normal 
distribution with mean 0 and standard deviation 1. From this original 
random sample we obtain 10 000 resamples of size n. As we increase the 
sample size, the Maximum Likelihood estimates of mean and standard 
deviation of the original random sample, µy and σy, tend to the popula-
tion average (µx = 0) and the population standard deviation (σx = 1). For 
each resample we estimate the mean and the standard deviation, obtai-
ning 10 000 means and 10 000 standard deviations. These estimates are 
used to find the 
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 that minimizes the objective function (4).

We have shown that for a Normal distribution it is possible to obtain 
a closed-form solution for probability-unbiased VaR. But for other 

2.  Notice that the samples must be resamples of the original sample (our observed values) for three rea-
sons: 1) if the samples were generated from the distribution function estimated with the original sample, 
we would obtain from each resample very different values of θ̂*

i, especially with small sample sizes, and we 
would have to draw many samples to obtain suitable results. Indeed, even extracting 100 000 samples from 
Fθ̂ we have not obtained the expected results, and αpu does not tend to α when n tends to ∞, 2) we have just 
one random sample, possibly of small size, and we cannot use classical statistical inference to find the sam-
pling distribution because we do not know the parameters of the population distribution and we cannot take 
the estimated parameters as population parameters. Therefore, to find the sampling distribution, at least ap-
proximately, we create many resamples by repeatedly sampling with replacement from the original random 
sample. Each resample has the same size as the original random sample, and 3) a bootstrap algorithm is ba-
sed on a large number of new samples obtained by sampling from the original sample, not by simulation.
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distributions for which the probability distributions of estimated para-
meters are either unknown or they are difficult to obtain, we suggest 
using this bootstrap algorithm. In particular, we will use below the FH 
algorithm to calculate probability-unbiased VaR for Student-t distribu-
tions as well as for a mixture of two Normal distributions.

1.6.	 Student-t Distribution

1.6.1. Probability-unbiased VaR estimator for a Student-t distribution

We assume that we have a finite-short sample from a Student-t distri-
bution function (Fθ). Following Francioni and Herzog, the VaR estimator 
is a modification on the α-quantile from the estimated distribution. We 
replace α by 
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 thereby taking a quantile of the estimated probability 
distribution different from α.

Hence, if F is a t-Student distribution, the VaR estimator can be written:

24 
 

!!" = !"#$%&!
1
! !! !!!∗

!! ! − !
!

!!!

 (4) 

 
 
The level of !!"    is chosen so that equation (1) is satisfied. Substituting !  for !!"  obtain the 
probability-unbiased VaR estimator. 
 

We start with a random sample of size ! generated from a Normal distribution with mean 0 and standard 
deviation 1. From this original random sample we obtain 10000 resamples of size  !. As we increase the 
sample size, the Maximum Likelihood estimates of mean and standard deviation of the original random 
sample, µμ!  and !! , tend to the population average (µμ!   =   0) and the population standard deviation 
(!!   =   1). For each resample we estimate the mean and the standard deviation, obtaining 10000 means 
and 10000 standard deviations. These estimates are used to find the !!"  that minimizes the objective 
function (4). 
 
We have shown that for a Normal distribution it is possible to obtain a closed-form solution for 
probability-unbiased VaR. But for other distributions for which the probability distributions of estimated 
parameters are either unknown or they are difficult to obtain, we suggest using this bootstrap algorithm.  
In particular, we will use below the FH algorithm to calculate probability-unbiased VaR for Student-t 
distributions as well as for a mixture of two Normal distributions. 
 
1.6. Student-t Distribution 

 
1.6.1. Probability-unbiased VaR estimator for a Student-t distribution 

 
We assume that we have a finite-short sample from a Student-t distribution function (Fθ). Following 
Francioni and Herzog, the VaR estimator is a modification on the !-quantile from the estimated 
distribution. We replace ! by !!"   thereby taking a quantile of the estimated probability distribution 
different from !. 
 
Hence, if ! is a t-Student distribution, the VaR estimator can be written: 
 

!"#! = !!!(!!"  ) 
 
where !!"  is chosen so that the equation    !![!   !!!! < !!)]   =   ! is satisfied. The !!"   approximation 
is obtained by a bootstrap algorithm.  The change of  ! for  !!"   corrects for the fact that do not observe 
infinite realizations. The probability-unbiased VaR estimator can be obtained for any sample size, 
including small sample sizes, while the estimator plug-in is only probability-unbiased when ! → ∞. 
We start with a random sample of size ! generated from a Student-t distribution with 2 degrees of 
freedom. This is the original random sample from which we will generate 10000 resamples of sample 
size  !.  The parameter to be estimated in this distribution is   the number of degrees of freedom. We use a 
method of moments estimator: ! = !!!

!!!!
  because of its simplicity although it requires that the distribution 

has a variance greater than 13. For each resample, we estimate the number of degrees of freedom, which is 
then used to find the !!"   value solving the previously established equation (4). 
 
Table 6 contains probabilities !!"   for the different values of ! and ! in the i.i.d. Studen-t distribution 
case with 2 degrees of freedom.  This table shows that !!"   →   ! as  ! → ∞. Comparing Table 1, 
probabilities αpu obtained from closed-formed solution for Normal distribution case, with Table 6, we 

                                                        
3 An alternative estimator might combine two different GMM estimators based on the variance and the kurtosis of the sample. 
However, often the number of estimated degrees of freedom is below 4, not allowing for the use of the kurtosis estimator. 
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We assume that we have a finite-short sample from a Student-t distribution function (Fθ). Following 
Francioni and Herzog, the VaR estimator is a modification on the !-quantile from the estimated 
distribution. We replace ! by !!"   thereby taking a quantile of the estimated probability distribution 
different from !. 
 
Hence, if ! is a t-Student distribution, the VaR estimator can be written: 
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where !!"  is chosen so that the equation    !![!   !!!! < !!)]   =   ! is satisfied. The !!"   approximation 
is obtained by a bootstrap algorithm.  The change of  ! for  !!"   corrects for the fact that do not observe 
infinite realizations. The probability-unbiased VaR estimator can be obtained for any sample size, 
including small sample sizes, while the estimator plug-in is only probability-unbiased when ! → ∞. 
We start with a random sample of size ! generated from a Student-t distribution with 2 degrees of 
freedom. This is the original random sample from which we will generate 10000 resamples of sample 
size  !.  The parameter to be estimated in this distribution is   the number of degrees of freedom. We use a 
method of moments estimator: ! = !!!

!!!!
  because of its simplicity although it requires that the distribution 

has a variance greater than 13. For each resample, we estimate the number of degrees of freedom, which is 
then used to find the !!"   value solving the previously established equation (4). 
 
Table 6 contains probabilities !!"   for the different values of ! and ! in the i.i.d. Studen-t distribution 
case with 2 degrees of freedom.  This table shows that !!"   →   ! as  ! → ∞. Comparing Table 1, 
probabilities αpu obtained from closed-formed solution for Normal distribution case, with Table 6, we 

                                                        
3 An alternative estimator might combine two different GMM estimators based on the variance and the kurtosis of the sample. 
However, often the number of estimated degrees of freedom is below 4, not allowing for the use of the kurtosis estimator. 
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Unfortunately, under nonlinear mappings of the parameter vector !, as it is the case of the quantile, the 
plug-in procedure generally introduces a small sample bias: ! ! !!"# < !"#! ≠ !. The reason is that 
it treats the estimated parameter vector as deterministic, even though ! is a random variable, a fact that 
must be incorporated into the estimation procedure in order to obtain probability-unbiasedness. As a 
consequence, the equation, !! = !!

!!(!) where !  is an estimator of the parameter ! , is only true 
asymptotically, i.e. as the number of observations goes to infinity, provided the plug-in estimator is 
consistent 
 

!"#! ≡ !!
!→!

!"#! ≡ !! = !!!!(!) 
 
almost surely for each !"Θ, so that this asymptotically unbiased. 
 
To obtain a probability-unbiased estimator for the quantile there are two approaches, 

1. Replacing the level ! by a suitable chosen level !!" to modify the quantile of the estimated 
distribution. The VaR estimator will be 
 

!! = !"#! = ! !, !!" = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
For example, if ! is a Normal distribution, the VaR estimator can be written 
 

!"#! =   ! + !!!!" 
where µμ and ! are the estimated mean and standard deviation, respectively, and !!!" is the inverse 
cumulative distribution function of the standard Normal(0,1) for  !!". 

2. Modifying the vector of estimated parameters ! of the distribution ! to !!" when computing the 
plug-in estimator 
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!! (!) 

 
If ! is a Normal distribution: !!" = (!!", !!"), and the VaR estimator would then be written as 
follows 
 

!"#! =   !!" + !!"!! 
 
On the other hand, the plug-in estimator, which has been used in the calculation of quantile / VaR 
is 
 

!"#! =   ! + !!! 
 

In this chapter we follow the first of these two approaches to calculate the probability-unbiased VaR, and 
we use the second approach, whenever possible, to graph an approximation of the function ! distorted by 
modifying the parameter  !.  Thus, we will be computing a probability-unbiased estimator of VaR, that is, 
an estimator 
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3 An alternative estimator might combine two different GMM estimators based on the variance and the kurtosis of the sample. 
However, often the number of estimated degrees of freedom is below 4, not allowing for the use of the kurtosis estimator. 

because of 
its simplicity although it requires that the distribution has a variance 
greater than 13. For each resample, we estimate the number of degrees of 

3.  An alternative estimator might combine two different GMM estimators based on the variance and the 
kurtosis of the sample. However, often the number of estimated degrees of freedom is below 4, not allowing 
for the use of the kurtosis estimator.
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freedom, which is then used to find the αpu value solving the previously 
established equation (4).

Table 6 contains probabilities αpu for the different values of α and n in 
the i.i.d. Studen-t distribution case with 2 degrees of freedom. This ta-
ble shows that αpu → α as n → ∞. Comparing Table 1, probabilities αpu 
obtained from closed-formed solution for Normal distribution case, with 
Table 6, we observe the convergence under the Student-t distribution is 
faster than under the Normal, and for small sample sizes we obtain an 
αpu closer to the theoretical α than under the Normal distribution. This 
is because the higher kurtosis of the Student-t distribution makes more 
likely the occurrence of extreme events, so that the correction needed 
on α is smaller.

Table 6: Probabilities αpu(%) to be used to obtain a probability-unbiased VaRα for 
different values of α and n in the i.i.d. Student-t distribution case

α (%)

n 0.5 1 5 10

10 0.071 0.332 3.865 8.903

15 0.227 0.639 4.470 9.490

20 0.357 0.798 4.663 9.668

25 0.363 0.804 4.656 9.654

50 0.373 0.821 4.701 9.706

100 0.389 0.833 4.784 9.776

150 0.450 0.926 4.862 9.858

200 0.445 0.919 4.855 9.853

Table 7 lists 
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Figure 2: The quantiles of the Normal cdf versus the quantiles of the distorted Normal cdf calculated with 
the parametric method. The diagonal (black line) represents no distortion. 

 
1.5.1. Parametric probability-unbiased VaR estimator for a Normal distribution 

 
We now turn to the estimation of VaR itself. We apply the first approach described in Section 1.3 to 
estimate the probability-unbiased VaR, which implies a modification of the quantile, replacing ! by !!". 
Table 3 shows the probability-unbiased !"#!  (!"#!") and the plug-in  !"#!  (!"#!"#$!!") obtained for 
different sample sizes and α’s. We can see that plug-in !"#!  underestimates risk, indicating smaller 
losses than we should really expect with !% probability. Thus, for instance, for a random sample of size 
25, the maximum expected loss with 95% probability or, equivalently, the minimum loss with a 5% is not 
1.844, but 1.949. 
 
The calculation of probability-unbiased VaR is particularly relevant for small sample sizes, when the 
difference in the estimation of VaR is higher than for large samples, for which the probability-unbiased 
!"#!  and the plug-in !"#!  are very similar. 
 
Now, we follow the second approach described in Section 1.3, to obtain the probability- unbiased VaR 
estimator by calculating the standard deviation of !!" the distorted distribution function !. 
 
If ! is a Normal distribution, the probability-unbiased VaR estimator can be written in two alternative 
ways: 
 

!"#! = !!" + !!"!! = ! + !!!!" 
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level α%. As with the Normal distribution, the calculation of probability-
unbiased VaR is especially relevant for small sample sizes although in 
this case, differences between both VaR estimates are larger. 
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Table 7: Probability-unbiased 
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 !"#!" !"#!"#$!!" 
n 0.5 1 5 10 0.5 1 5 10 
10 -3.227 -2.786 -1.768 -1.305 -2.409 -2.165 -1.496 -1.139 
15 -2.796 -2.440 -1.570 -1.150 -2.309 -2.065 -1.400 -1.045 
20 -3.206 -2.866 -2.011 -1.587 -2.839 -2.582 -1.880 -1.506 
25 -3.117 -2.789 -1.949 -1.527 -2.825 -2.562 -1.844 -1.461 
50 -2.925 -2.624 -1.827 -1.415 -2.783 -2.513 -1.775 -1.382 

100 -2.546 -2.307 -1.666 -1.329 -2.488 -2.262 -1.645 -1.316 
150 -2.621 -2.374 -1.705 -1.352 -2.581 -2.342 -1.690 -1.343 
200 -2.393 -2.165 -1.547 -1.220 -2.365 -2.143 -1.537 -1.213 

 
Table 3: Probability-unbiased !"#!versus plug-in !"#!  in the case of Normal(0,1). 

 
that illustrate the two equivalent approaches to probability-unbiased VaR estimation: either we distort the 
quantile and use the estimated parameters or we maintain the original quantile while distorting the 
estimated parameters. This equation also shows that once we have calculated !!"  we can obtain !!!!" 
and viceversa. 
 
Since the mean of the distribution is very low in high frequency returns and it is estimated with very low 
precision, we can consider it to be the same for the distorted distribution as for the original distribution, 
i.e. µμ!"   =   µμ. Then, we will calculate the standard deviation !!" of the distorted distribution function 
implicitly so that the previous equation holds. That standard deviation will be different for every ! and 
for each sample size (!) because !"#!  also changes with ! and with !. 
 
Table 4 shows the !!!  values obtained for different α and n. Notice that !!"  is greater for small sample 
sizes suggesting the heavier tails of the distorted distribution. For a given sample size, we obtain larger 
differences between !  and !!"    for the more extreme quantiles. For a given ! , we obtain greater 
differences between ! and !!" for small sample sizes. As the sample size increases the !!"’s move closer 
to the sample standard deviation (!   =   !) for any ! and, therefore, closer to the population standard 
deviation, 1. At !   =   200 we see a distortion produced by estimating the mean. Had we set µμ   =   0 when 
calculating the parametric VaR estimate, we would get !!"  converging to !  and hence, to ! , the 
population standard deviation, which is equal to 1, as the sample size increases. 
 
Figure 3 shows the true density function of a random variable N(0,1) (blue line), the density function of 
the Normal distribution with the parameters estimated from a random sample of size 15 extracted from a 
N(0,1) (red line), and the density function of the distorted estimated distribution function using the !!" 
estimate (green line). We can see that the distorted distribution function has heavier tails, which should 
allow for a better fit to most asset returns.  The probability-unbiased !"# (green point) indicates higher 
losses than plug-in !"# (red point).  In other words, the plug-in estimator underestimates risk. This will 
generally be the case with small size samples. Besides, the smaller the sample size the greater the 
correction or adjustment needed on the probability distribution. 
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α in the case of Student-t 
distribution

n 0.5 1 5 10 0.5 1 5 10

10 -17.102 -8.949 -2.975 -1.885 -7.515 -5.564 -2.609 -1.752

15 -14.275 -8.533 -3.078 -1.940 -9.650 -6.808 -2.887 -1.872

20 -7.928 -5.716 -2.612 -1.750 -6.919 -5.205 -2.522 -1.714

25 -9.530 -6.635 -2.815 -1.838 -8.247 -5.997 -2.709 -1.796

50 -7.437 -5.448 -2.556 -1.727 -6.634 -5.031 -2.479 -1.695

100 -8.666 -6.198 -2.736 -1.805 -7.762 -5.711 -2.643 -1.767

150 -8.372 -6.054 -2.715 -1.798 -7.990 -5.846 -2.674 -1.781

200 -8.512 -6.128 -2.728 -1.804 -8.078 -5.898 -2.686 -1.786

1.7.	Mixture of two Normal distributions

1.7.1.	Probability-unbiased VaR estimator for Mixtures of Normal distributions

As an example, we consider a mixture of Normal distributions with di-
fferent mean and different standard deviation: N(-5,10) and N(0,1) with 
mixing parameter p = 0.1. With so different Normal distributions and a 
small p, the resulting mixture can capture potential extreme data much 
better than a Normal distribution, which may provide a better fit to some 
of the statistical characteristics observed in asset returns. Table 8 shows 
moments for sample sizes 100, 200, 300 and 400. As a result of this mi-
xing, we obtain a distribution having a smaller mean, greater deviation 
and largest kurtosis than the second Normal distribution. The quantiles 
of a mixture distribution do not accept a closed form solution but rather, 
they require solving an implicit equation. Therefore, to calculate the VaR 
we cannot use the parametric approach. We then need to work with sam-
ples larger than in the case of Normal and t-Student distributions becau-
se both plug-in VaR and probability-unbiased VaR are now calculated as 
a sample percentile. For example, if we want to compute the 1% percen-
tile, we must compute it from a sample of considerable size to avoid that 
it might fall outside the data range. For instance, the prctile function of 
MatLab would return the first value of the sample, in spite of the fact 
that the first value might be significantly larger than the 1% percentile.
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Table 8: First four moments for samples of size 100, 200, 300 and 400 of 
a mixture distribution of N(-5,10) and N(0,1) with a mixing parameter p = 0.1

MIXTURE of N(-5,10) and N(0,1)

n µmix σmix skewnessmix kurtosismix

100 -0.5274 3.8400 -3.0260 18.8137

200 -0.5415 3.4229 -4.9035 34.4905

300 -0.2653 2.7198 -2.1651 29.9570

400 -0.2644 3.4468 -2.6797 27.9013

Table 9 shows the 
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Unfortunately, under nonlinear mappings of the parameter vector !, as it is the case of the quantile, the 
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must be incorporated into the estimation procedure in order to obtain probability-unbiasedness. As a 
consequence, the equation, !! = !!

!!(!) where !  is an estimator of the parameter ! , is only true 
asymptotically, i.e. as the number of observations goes to infinity, provided the plug-in estimator is 
consistent 
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almost surely for each !"Θ, so that this asymptotically unbiased. 
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where !!" is chosen so that equation (1) is fulfilled. 
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If ! is a Normal distribution: !!" = (!!", !!"), and the VaR estimator would then be written as 
follows 
 

!"#! =   !!" + !!"!! 
 
On the other hand, the plug-in estimator, which has been used in the calculation of quantile / VaR 
is 
 

!"#! =   ! + !!! 
 

In this chapter we follow the first of these two approaches to calculate the probability-unbiased VaR, and 
we use the second approach, whenever possible, to graph an approximation of the function ! distorted by 
modifying the parameter  !.  Thus, we will be computing a probability-unbiased estimator of VaR, that is, 
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!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
 

 calculated from the bootstrap method to estimate 
the probability-unbiased VaR. We again see that the 1% and 5% plug-in 
VaR underestimate risk. 

Table 9: Probabilities αpu(%) needed to obtain probability-unbiased 
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 !"#!" !"#!"#$!!" 
n 0.5 1 5 10 0.5 1 5 10 
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Table 3: Probability-unbiased !"#!versus plug-in !"#!  in the case of Normal(0,1). 
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 α 
for samples of size 100, 200, 300 and 400 of a mixture distribution of a 
Normal(-5,10) and of a Normal(0,1) with mixing parameter p = 0.1. We also show 
the associated probability-unbiased VaR and plug-in VaR for α = 1% and α = 5%

α = 1% α = 5%

n
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VaRpu VaRplug–in

100 0.5806 -23.2413 -19.0515 4.6457 -6.6337 -5.5756
200 0.7963 -18.4699 -17.7663 4.6833 -2.2543 -1.8864
300 0.8333 -12.6246 -12.4064 4.8733 -2.1380 -2.1126
400 0.8677 -20.5952 -18.8131 4.8821 -2.7855 -2.6125

1.8.	 Empirical application and comparison with other VaR models

In this section we follow McNeil et al. (2005, chapter 2.3.6) to test di-
fferent VaR estimation methods using the last 1000 data observations 
from a portfolio that invests 30% in the Financial Times 100 Shares 
Index (FTSE 100), 40% in the Standard & Poor’s 500 (S&P 500) and 30% 
in Swiss Market Index (SMI) between 1992 and 2003. We consider the 
application of methods belonging to the general categories of varian-
ce-covariance and historical simulation methods to the portfolio of an 
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investor in international equity indexes. The investor is assumed to have 
domestic currency pound sterling (GBP) and to invest in FTSE 100, S&P 
500 and SMI. The investor thus has currency exposure to US dollars 
(USD) and Swiss francs (CHF) and the value of portfolio is influenced by 
five risk factors (three log index values and two log exchange rates). We 
standardize the total portfolio value Vt in sterling to be one
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The return series show little serial correlation, to the point that it is safe to treat returns as being i.i.d.. 
 
The VaR estimation methods considered are, 
 

� VC: The standard unconditional variance-covariance method assuming multivariate Gaussian 
risk-factor changes. 

� HS: The standard unconditional historical simulation method. 
� VC-t: The standard unconditional variance-covariance method assuming multivariate Student-t 

risk-factor changes. 
� HS-GARCH: A conditional version of the historical simulation method in which GARCH(1,1) 

models with a constant conditional mean term and Gaussian innovations are fitted to the 
historically simulated losses to estimate the volatility of the  next day’s loss. 

� VC-MGARCH: A conditional version of the variance-covariance method in which a multivariate 
GARCH model (a first-order constant conditional correlation model) with multivariate Normal 
innovations is used to estimate the conditional covariance matrix of the next day’s risk-factor 
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� HS-EWMA: A conditional method, similar to HS-GARCH, in which the EWMA method is used 
to estimate the conditional covariance matrix of the next day’s risk- factor changes. 

� VC-EWMA: A similar method to VC-MGARCH but a multivariate version of the EWMA 
method is used to estimate the conditional covariance matrix of the next day’s risk-factor 
changes. 

� HS-GARCH-t: A similar method to HS-GARCH but Student-t innovations are assumed in the 
GARCH model. 

� VC-MGARCH-t: A similar method to VC-MGARCH but multivariate Student-t innovations are 
used in the MGARCH model. 

� HS-CONDEVT: A conditional method using a combination of GARCH modeling and EVT 
(extreme value theory). 
 

The characteristics of the distortion of α allows for efficiently estimating the VaR quantile from a short 
amount of data to capture the clusters in the data. This is relevant because extreme returns appear in 
clusters (McNeil et al., 2005) and if we use the i.i.d. model with long windows we will be likely to 
underestimate risk. VaR estimates would then change very slowly, being unable to capture changes that 
may occur in the market as soon as they happen. 
 
On the contrary, calculation of the probability-unbiased VaR estimator from short rolling windows under 
the i.i.d. approach has some advantages (Francioni and Herzog, 2012): i) only a few data points are 

where x1, x2 and x3 represent log-returns on the three indexes and x4 
and x5 are log-returns on the GBP/USD and GBP/CHF exchanges rates, 
respectively.

The return series show little serial correlation, to the point that it is safe 
to treat returns as being i.i.d.

The VaR estimation methods considered are,
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assuming multivariate Gaussian risk-factor changes.

•	 HS: The standard unconditional historical simulation method.
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assuming multivariate Student-t risk-factor changes.
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method in which GARCH(1,1) models with a constant conditional 
mean term and Gaussian innovations are fitted to the historically 
simulated losses to estimate the volatility of the next day’s loss.

•	 VC-MGARCH: A conditional version of the variance-covariance 
method in which a multivariate GARCH model (a first-order 
constant conditional correlation model) with multivariate Normal 
innovations is used to estimate the conditional covariance matrix 
of the next day’s risk-factor changes.
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•	 HS-GARCH-t: A similar method to HS-GARCH but Student-t in-
novations are assumed in the GARCH model.

•	 VC-MGARCH-t: A similar method to VC-MGARCH but multivar-
iate Student-t innovations are used in the MGARCH model.

•	 HS-CONDEVT: A conditional method using a combination of 
GARCH modeling and EVT (extreme value theory).

The characteristics of the distortion of α allows for efficiently esti-
mating the VaR quantile from a short amount of data to capture 
the clusters in the data. This is relevant because extreme returns appear  
in clusters (McNeil et al., 2005) and if we use the i.i.d. model with long 
windows we will be likely to underestimate risk. VaR estimates would 
then change very slowly, being unable to capture changes that may 
occur in the market as soon as they happen.

On the contrary, calculation of the probability-unbiased VaR estimator 
from short rolling windows under the i.i.d. approach has some advanta-
ges (Francioni and Herzog, 2012): i) only a few data points are needed 
to obtain a very good VaR estimate and ii) this approach outperforms 
other alternatives that need many data points to calibrate the model, 
e.g. EWMA, GARCH, ... (at least 1 000 data are necessary to calibrate the 
models, McNeil et al., 2005). In fact, we have confirmed in previous sec-
tions results by Francioni and Herzog showing that the standard plug-in 
VaR estimates of a Normal population is biased. We have also described 
their suggestion to distort the significance level α so that the resulting 
VaR estimate is unbiased, and we have extended their results to other 
probability distributions.

We now calculate 
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must be incorporated into the estimation procedure in order to obtain probability-unbiasedness. As a 
consequence, the equation, !! = !!

!!(!) where !  is an estimator of the parameter ! , is only true 
asymptotically, i.e. as the number of observations goes to infinity, provided the plug-in estimator is 
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almost surely for each !"Θ, so that this asymptotically unbiased. 
 
To obtain a probability-unbiased estimator for the quantile there are two approaches, 

1. Replacing the level ! by a suitable chosen level !!" to modify the quantile of the estimated 
distribution. The VaR estimator will be 
 

!! = !"#! = ! !, !!" = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
For example, if ! is a Normal distribution, the VaR estimator can be written 
 

!"#! =   ! + !!!!" 
where µμ and ! are the estimated mean and standard deviation, respectively, and !!!" is the inverse 
cumulative distribution function of the standard Normal(0,1) for  !!". 

2. Modifying the vector of estimated parameters ! of the distribution ! to !!" when computing the 
plug-in estimator 
 

!! = !"#! = ! !!", ! = !!!"
!! (!) 

 
If ! is a Normal distribution: !!" = (!!", !!"), and the VaR estimator would then be written as 
follows 
 

!"#! =   !!" + !!"!! 
 
On the other hand, the plug-in estimator, which has been used in the calculation of quantile / VaR 
is 
 

!"#! =   ! + !!! 
 

In this chapter we follow the first of these two approaches to calculate the probability-unbiased VaR, and 
we use the second approach, whenever possible, to graph an approximation of the function ! distorted by 
modifying the parameter  !.  Thus, we will be computing a probability-unbiased estimator of VaR, that is, 
an estimator 
 

!! = !!
!!(!!") 

 
where !!" is chosen so that equation (1) is fulfilled. 
 

 values to obtain the probability-unbiased VaR 
estimator in a rolling window of size n. We start with the simpler case 
of the Normal distribution, a member of the location-scale family. Under 
Normality there is no dependence on any additional parameter and we 
can use 
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 values provided in Table 1 (calculated by closed-form). The 
Student-t has the number of degrees of freedom as an additional pa-
rameter, which we estimate by Maximum Likelihood first from portfolio 
return data to subsequently calculate 
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 values4. A similar procedure is 
followed for mixtures of two Normals, starting with the GMM estimation 

4.  The GMM parameter estimates for returns from this portfolio are µ1= –0.0020, µ2= –0.0011, σ1= –0.0020, 
σ2= –0.0214 and p = 0.2487, very different from those used in the simulation exercise.
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returns for then calculate 
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values needed to calculate probability-unbiased VaR in each window of 
size n. We propose mixtures of Normals as a more realistic distributions 
to further improve the results obtained under the Normal distribution.

Table 10 shows the number of annual VaR exceedances for the i.i.d. 
rolling window 5% VaR estimator under Normal and Student-t distri-
butions, for different sample sizes. Every year, that number is relatively 
close to its expected value of 13 (aprox. 5% 260 days)5. The results in 
Table 10 suggest that under a Student-t distribution, windows with n = 
20, 25 and 50 data points are generally outperformed by the shorter n 
= 15 window. In particular, for 1993, 1994, 2000 and 2001 VaR is poorly 
estimated under the Student-t distribution, with too many violations of 
the 95% VaR estimates. In general, 2000, 2001 and 2002 were the most 
difficult years to use in prediction for most models, since returns beca-
me very volatile, with many extreme losses. In the case of the Normal 
distribution, n = 15 and n = 25 perform better than n = 50.

For the mixture of two Normal distributions, the window with n = 100 
outperforms longer window sizes especially during 1996, 1997 and 
1998. We again work with samples larger than in the case of Normal 
and Student-t distributions for reasons explained above.

When comparing the performance of the different models for VaR estima-
tion we look at estimates from 1996 through 2003, because that is the time 
period considered by McNeil et al. (2005) with whom we want to compare 
our results. We use rolling windows and calculate probability-unbiased VaR 
estimator in each window. On the contrary, the models considered by Mc-
Neil et al. (2005) consider the full period (1996-2003) to calculate plug-in 
VaR estimates. For the performance analysis, two different quantities are 
calculated: i) the overall exceedance probability, defined as the number of 
observed exceedances in the period divided by the number of data points, 
ii) the Observed Absolute Deviation per year (OAD), used by McNeil et al. 
(2005), which was introduced by Francioni and Herzog as the mean of the 
absolute difference between the expected number of exceedances (i.e. 3 
for 1% VaR and 13 for 5% VaR) and the number of observed exceedances.

5.  Except for 1992, when we lost n data observations due to the rolling window.
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Table 10: Number of 5% VaR exceedances per year for the i.i.d. rolling window 
model with window length n. Absolute differences between the expected number 
of exceedances (13 per year) and the number of observed exceedances is reported 
in parentheses

Normal Year

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

n = 10 5 (8) 5 (8) 8 (5) 8 (5) 8 (5) 6 (7) 5 (8) 4 (9) 9 (4) 3 (10) 3 (10) 3 (10)

n = 15 7 (6) 7 (6) 8 (5) 11 (2) 14 (1) 9 (4) 11 (2) 7 (6) 12 (1) 7 (6) 8 (5) 6 (7)

n = 20 7 (6) 14 (1) 11 (2) 8 (5) 12 (1) 10 (3) 15 (2) 9 (4) 14 (1) 14 (1) 6 (7) 8 (5)

n = 25 7 (6) 18 (5) 12 (1) 10 (3) 13 (0) 10 (3) 13 (0) 12 (1) 13 (0) 13 (0) 9 (4) 6 (7)

n = 50 7 (6) 13 (0) 17 (4) 11 (2) 15 (2) 12 (1) 14 (1) 11 (2) 15 (2) 18 (5) 11 (2) 9 (4)

Student-t	 Year	

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

n = 10 8 (5) 12 (1) 10 (3) 13 (0) 13 (0) 9 (4) 10 (3) 14 (1) 17 (4) 10 (3) 11 (2) 10 (3)

n = 15 8 (5) 15 (2) 12 (1) 12 (1) 14 (2) 10 (3) 15 (2) 12 (1) 15 (2) 16 (3) 13 (0) 10 (3)

n = 20 9 (4) 19 (6) 16 (3) 10 (3) 15 (2) 14 (1) 17 (4) 12 (1) 17 (4) 18 (5) 14 (1) 8 (5)

n = 25 10 (3) 19 (6) 15 (2) 11 (2) 16 (3) 13 (0) 18 (5) 13 (0) 17 (4) 18 (5) 12 (1) 9 (4)

n = 50 9 (4) 13 (0) 18 (5) 11 (2) 15 (2) 13 (0) 16 (3) 12 (1) 17 (4) 19 (6) 12 (1) 9 (4)

Mixture	 Year	

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

n = 100 7 (6) 13 (0) 15 (2) 9 (4) 15 (2) 14 (1) 14 (1) 8 (5) 19 (6) 15 (2) 19 (6) 8 (5)

n = 200 1 (12) 12 (1) 15 (2) 5 (8) 17 (4) 16 (3) 19 (6) 6 (7) 14 (1) 15 (2) 16 (3) 2 (11)

n = 300 0 (13) 7 (6) 20 (7) 4 (9) 22 (9) 23 (10) 19 (6) 4 (9) 17 (4) 16 (3) 20 (7) 3 (10)

n = 400 0 (13) 4 (9) 19 (6) 6 (7) 21 (8) 26 (13) 20 (7) 5 (8) 13 (0) 19 (6) 22 (9) 4 (9)

Table 11 clearly shows that the i.i.d. model with rolling window outper-
forms the other models with respect to the overall exceedance probabi-
lity and OAD6. For the 1% probability-unbiased VaR, the Normal model 

6.  Values for the overall exceedance probability and OAD for standard models in the lower half of Tables 11 
and 12 are taken from McNeil et al. (2005).
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with window of length 25, the Student-t model with window of length 
15 and the mixture with window of length 100 show the best overall 
probabilistic properties. At 5% significance, Table 12 shows that the 
i.i.d. Student-t model with rolling window of size 15 and the Normal 
model with rolling window of size 50 outperform the other models with 
respect to OAD and to the overall exceedance probability, respectively. 
The mixture with a window of length 100 is the best within models with 
mixture distribution and outperforms in VaR estimation many of the 
methods proposed by McNeil et al. (2005).

Table 11: Historical 1% VaR exceedance probabilities of the various models and 
historical Observed Absolute Deviation (OAD) per year

Model Exc. Prob. (%) OAD

N i.i.d. n = 15 0.16 2.50

N i.i.d. n = 25 0.87 1.33

N i.i.d. n = 50 1.43 1.42

ST i.i.d. n = 15 0.83 1.25

ST i.i.d. n = 25 1.32 1.33

ST i.i.d. n = 50 1.65 1.50

NM i.i.d. n = 100 1.02 1.33

NM i.i.d. n = 200 1.29 2.00

NM i.i.d. n = 300 1.38 2.42

NM i.i.d. n = 400 1.43 2.33

VC 3.03 5.55

HS 2.02 3.00

VC-t 2.35 3.87

HS-GARCH 2.26 2.87

VC-MGARCH 2.31 2.87

HS-EWMA 2.07 2.62

VC-EWMA 2.02 2.62

HS-GARCH-t 1.68 1.62

VC-MGARCH-t 1.44 3.12

HS-CONDEVT 1.35 1.25
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Table 12: Historical 5% VaR exceedance probabilities of the various models 
and historical Observed Absolute Deviation (OAD) per year

Model Exc. Prob. (%) OAD

N i.i.d. n = 15 3.43 4.16

N i.i.d. n = 25 4.38 2.41

N i.i.d. n = 50 4.97 2.42

ST i.i.d. n = 15 4.87 1.92

ST i.i.d. n = 25 5.5 2.83

ST i.i.d. n = 50 5.32 2.50

NM i.i.d. n = 100 5.15 2.92

NM i.i.d. n = 200 4.71 4.17

NM i.i.d. n = 300 5.48 6.50

NM i.i.d. n = 400 5.82 6.25

VC 7.36 7.88

HS 7.65 8.12

VC-t 8.46 10.25

HS-GARCH 6.11 3.38

VC-MGARCH 6.64 4.50

HS-EWMA 6.2 3.62

VC-EWMA 5.92 3.38

HS-GARCH-t 6.34 3.75

VC-MGARCH-t 6.93 5.50

HS-CONDEVT 5.77 2.75

In general, the i.i.d. approach with short windows incorporates too little 
information to produce good VaR estimates, whereas with large windows 
VaR estimates are too static and they do not adapt to new information fast 
enough. However, the i.i.d. approach to compute the 1% and 5% probabili-
ty-unbiased VaR outperforms the alternative models considered by McNeil 
et al., which are more complex and use the plug-in VaR estimator. Figures 
7 and 8 show a plot of the probability-unbiased VaR estimates of the i.i.d. 
Student-t model with a rolling window size of 20 and 200 data points, res-
pectively. The rolling window with 20 data points clearly reacts extremely 
fast to new data, with occasional large jumps in the VaR estimate.
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Figure 7: Portfolio log-returns from 1992 to 2003 and i.i.d. VaR estimates for 
different α based on a Student-t rolling window model with a window length of 
20 observations

3	
  
	
  

Figure 6: Enlarged left tail of the true N(0,1) cdf (solid line), the plug-in cdf (dashed line) and the unbiased 
cdf (dotted line) for different sample sizes. On the horizontal axis the data points for the true !"#!% (black 

square), the plug-in !"#!% (black triangle) and the unbiased !"#!% (black circle) are plotted. 
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respectivamente por las siguientes, 
 

 

Figure 8: Portfolio log-returns from 1992 to 2003 and i.i.d. VaR estimates for 
different α based on a Student-t rolling window model with window length of 200 
observations
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1.9.	 Conclusions

Francioni and Herzog (2012) (FH) proposed a standard resampling boot-
strap algorithm to estimate a probability unbiased VaR in the case of 
Normal returns. The main idea is to replace the level α by a suitable 
chosen level 
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 which minimizes the averaged distance of the boot-
strapped estimators to α. In other words, their strategy consisted on 
modifying the desired significance level α to obtain 
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 in such a way 
that we obtain an unbiased estimate of VaR at the original significance 
level. Their analysis suggested that VaR estimates based on short sam-
ples may have a good performance for Normal distributions, often beat-
ing standard VaR estimates based on long samples.

We explore the properties of the probability-unbiased VaR proposed by 
FH as an interesting alternative to plug-in VaR when working with short 
samples and a small significance level α. It is then when the probability-
unbiased VaR differs more from plug-in VaR. We extend work by FH 
to Student-t distributions and mixtures of Normal distributions. Our 
results suggest that for a variety of distributions the plug-in VaR esti-
mator underestimates risk for a given range of probabilities (α) when 
estimated from short samples. The smaller the sample size, the greater 
the underestimation of risk by the plug-in VaR estimator. The range of 
probabilities for which plug-in VaR underestimates risk depends on the 
sample size and on the assumed probability distribution for returns. In 
all these cases the probability-unbiased VaR performs better.

In the Gaussian case we can use the parametric approach to estimate 
VaR in closed form. For other cases we use an appropriate bootstrapping 
algorithm suggested by FH. We show that the performance of the prob-
ability-unbiased estimators for small sample sizes is surprisingly good 
also for Student-t distributions as well as for mixtures of Normals. The 
reason is that the shorter the period, the more uniform will be the sam-
ple. Besides, the conditional volatility will not change much over a short 
sample, making the sample almost i.i.d.. The difference between 
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 and 
α is larger for a Normal sample than for a Student-t distribution. For a 
Mixture of Normals, the difference depends on the mixing parameters.

We also estimate probability-unbiased confidence intervals for the VaR 
estimator. For the three distributions (Normal, Student-t and mixture of 
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Normals) the probability-unbiased confidence interval is shifted to the left, 
relative to the standard confidence interval calculated using the plug-in 
VaR estimator. Once again, the leftward shift of the probability-unbiased 
confidence interval is due to the fact that most simulated VaR values fall 
to the left of the VaR estimate. Hence, a symmetric confidence interval 
would not be appropriate. The findings in this chapter suggest that the 
unbiased VaR estimator is a valuable tool for the practice of risk man-
agement.
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CHAPTER 2. VOLATILITY SPECIFICATIONS VERSUS 
PROBABILITY DISTRIBUTIONS IN VAR ESTIMATION

2.1.	Introduction

A traditional discussion in risk measurement analysis has been whether 
volatility models that incorporate a leverage effect, with negative inno-
vations having a larger impact on volatility than positive innovations 
of the same size, lead to better Value at Risk (VaR) forecasts. A second 
modeling issue refers to whether asymmetric probability distributions 
for return innovations lead to an improved VaR model7.

The goal of this chapter is to examine the relative importance of the 
two issues, the volatility specification and the assumption on the pro-
bability distribution of return innovations, for the efficiency of VaR 
forecasts. The question is crucial for risk managers, since there are so 
many potential choices for volatility model and probability distribu-
tions that it would be very convenient to establish some priorities in 
modeling returns for risk estimation. To that end, we have performed an 
extensive analysis of VaR forecasts in assets of different nature, using 
symmetric and asymmetric probability distributions for the innovations 
on volatility models with and without leverage. Additionally, we want to 
make some progress in characterizing the more appropriate probability 
distributions and volatility specifications to be used for innovations in 
financial returns.

We consider three general volatility specifications with leverage, GJR-
GARCH, APARCH and FGARCH as well as the standard symmetric 
GARCH model as benchmark. The FGARCH model includes as special 
cases many other volatility specifications, like the symmetric GARCH, 
GJR-GARCH and APARCH. It is, in fact, a nested family of GARCH- type 

7.  Along the chapter we refer to a VaR forecasting model as a combination of a probability distribution 
and a volatility specification for return innovations.
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models, thereby allowing for testing how simpler models fit the data. Be-
sides, the FGARCH and APARCH models take the power on the conditio-
nal standard deviation of the innovations as a free parameter. That way, 
they provide more flexibility to the dynamics of volatility, allowing for 
shifts and rotations in the news impact curve. The two types of asymme-
try in volatility produced by shifts and rotations are distinct, and they 
should not be treated as substitutes for each other (Hentschel, 1995).

As probability distributions for the innovations we compare the per-
formance of the skewed Student-t distribution and skewed Generali-
zed Error distribution as introduced in Fernandez and Steel (1998), the 
unbounded Johnson SU distribution, skewed Generalized-t distribution 
(Theodossiou, 1998) and Generalized Hyperbolic skew Student-t distri-
bution (Aas and Haff, 2006), with the Normal and symmetric Student-t 
distributions as benchmark. An interesting feature of our work is the 
consideration of a variety of assets of different nature: stock market in-
dexes, individual stocks, interest rates, commodity prices and exchange 
rates.

A novel approach of our analysis is to use standard statistical tests 
to examine the extent to which the estimated probability distributions 
fit the distribution of empirical return innovations. Additionally, each 
estimated combination of volatility specification and probability dis-
tribution for return innovations determines the distribution of returns 
themselves. We use simulation methods to analyze whether our esti-
mated models fit the main characteristics of return distributions. These 
should be expected to be two natural conditions for the good VaR per-
formance of a model. But, in spite of the fact that significant effort is 
generally placed in selecting an appropriate probability distribution and 
volatility model, the ability of estimates to explain sample moments is 
seldom examined.

We calculate VaR forecasts following the parametric approach. An AR(1) 
was estimated for daily returns in all cases. The performance of VaR 
forecasts is examined through standard tests: the unconditional cove-
rage test of Kupiec (1995), the independence and conditional coverage 
tests of Christoffersen (1998), the Dynamic Quantile test of Engle and 
Manganelli (2004), as well as the evaluation of the Asymmetric Linear 
Tick loss function (AlTick) proposed by Giacomini and Komunjer (2005). 
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The combination of 19 assets, 7 probability distributions, 4 volatility 
specifications and 4 backtests of VaR leads to an extensive set of results 
that need to be summarized in a search for some consistent conclusions. 
One of the contributions of this chapter is to follow a diverse strategy 
to examine test results in search of robust patterns that might suggest 
some preferred VaR model specifications. We proceed along several li-
nes: i) comparing the number of realized and theoretical violations of 
VaR for the alternative models across the set of assets, ii) comparing 
the p-values of VaR tests over the alternative models, iii) applying a 
Dominance criterion we introduce in this chapter to the alternative VaR 
models considered, iv) following the Model Confidence Set approach to 
select the most preferred models. Such multiple strategy for summari-
zing the information allows us to draw some clear-cut conclusions on 
the benefits of the alternative models.

Our results suggest that the important assumption for VaR performan-
ce is that of the probability distribution of the innovations, with the 
choice of volatility model playing a secondary role. Indeed, validation 
tests for VaR forecasts yield very similar results for a given probability 
distribution as we change the volatility model. On the contrary, test 
results drastically change for a given volatility model when we change 
the assumption on the probability distribution of the innovations. In 
fact, the main difference arises when we move from symmetric to asym-
metric probability distributions for the innovations, a result consistent 
with work by Gerlach et al. (2011) and Dendramis et al. (2014), among 
others. The unbounded Johnson distribution, the skew Generalized-t 
distribution and the skewed Generalized Error distributions seem to do-
minate other asymmetric distributions, like the skewed Student-t and 
the Generalized Hyperbolic skewed Student-t. Symmetric distributions 
are clearly inappropriate. Furthermore, FGARCH and APARCH volatility 
specifications dominate other alternatives. Indeed, our results suggest 
that the standard deviation, rather than the variance, should often be 
used to model volatility dynamics.

Relative to the ability to reproduce sample moments, different volati-
lity models with the same probability distribution for the innovations 
fit sample moments similarly. On the other hand, while it is obviously 
true that asymmetric distributions are needed to explain the skewness 
in returns, symmetric and asymmetric probability distributions, imposed 
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on the same volatility model lead to minor differences in kurtosis. The 
ability of estimated models to fit the empirical distributions of returns 
and returns innovations seems in fact, a necessary condition for a good 
VaR performance.

2.2.	A review of literature

Among parametric methods for VaR estimation, some authors have 
analyzed the improvement on VaR estimation provided by volatility 
models with leverage. Giot and Laurent (2003a) estimated daily VaR for 
stock indexes using different volatility models. They stated that more 
complex models like APARCH performed better than RiskMetrics or 
GARCH specifications (for a comparison of volatility models in VaR 
estimation see also El Babsiri and Zakoian, 2001). Angelidis et al. (2004) 
show that volatility models with leverage fare better than symmetric 
specifications, as they capture more efficiently the characteristics of the 
underlying series and provide better VaR forecasts since they perform 
better in the low probability regions that VaR tries to measure (see also 
Ane, 2006). McMillan and Kambouroudis (2009) provide evidence on 
the performance of alternative VaR models for a large number of indivi-
dual stocks and exchange rates. They conclude that the APARCH model 
should be preferred for more extreme VaR forecasts, while the RiskMe-
trics model seems to be adequate at more moderate significance levels. 
In their work, RiskMetrics seems adequate in providing volatility fore-
casts for most Asian markets; however, the APARCH model is superior 
in obtaining forecasts for the G7 markets, as well as for other European 
markets and for the larger Asia markets.

Given the widespread evidence on the skewness of the distribution of 
asset returns, analyzing whether the assumption of an asymmetric dis-
tribution of return innovations leads to more efficient VaR forecasts is a 
second methodological issue of interest. Based on the influence of leve-
rage effects on the accuracy of VaR forecasts, Brooks and Persand (2003) 
concluded that models which do not allow for asymmetries either in the 
unconditional distribution of returns or in the volatility specification 
underestimate the true VaR. Giot and Laurent (2003a) used daily data for 
stock market indexes and individual stocks, showing that models that 
rely on a symmetric density for return innovations underperform with 
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respect to skewed density models that require modeling both the left and 
right tails of the distribution of returns. Lee and Su (2015) estimate VaR 
for eight stock market indexes from Europe and Asia by a parametric 
GARCH approach as well as by the semi-parametric approach of Hull 
and White. The only asymmetric distribution they consider, the skewed 
Generalized-t, is shown to have a better VaR forecasting performance 
than the Student-t, with the Normal distribution being the last in the 
ranking, according to the unconditional coverage test of Kupiec and two 
different loss functions.

Corlu et al. (2016) investigate the ability of five alternative probability 
distributions to represent the behavior of daily equity index returns over 
the period 1979-2014: the skewed Student-t distribution, the generali-
zed lambda distribution, the Johnson system of distributions, the normal 
inverse Gaussian distribution, and the g-and-h distribution. The expla-
natory power of the alternative distributions is tested using in-sample 
Value at Risk (VaR) failure rates. Their focus is on the unconditional dis-
tribution of equity returns, not on conditional distributions. They find 
that the generalized lambda distribution is a prominent alternative for 
modeling the behavior of daily equity index returns.

More recently, some papers have jointly examined the performance of 
both, the variance specification and the probability distribution of re-
turn innovations in VaR estimation. Gerlach et al. (2011) examine the 
performance of a wide class of volatility models: RiskMetrics, asymme-
tric GARCH, IGARCH, GJR-GARCH and EGARCH, under four alternative 
probability distributions: Gaussian, Student-t, Generalized Error Distri-
bution and skewed Student-t in VaR forecasting at 1% and 5% signi-
ficance in different time periods (pre-crisis, crisis-GFC and post-crisis) 
incorporating parameter uncertainty through a Bayesian approach. Re-
sults are varied and hard to summarize, but their evidence suggests a 
preference for asymmetric probability distributions for the innovations 
of the return process. Giot and Laurent (2003b) analyze daily returns 
on commodities fitting ARCH and APARCH models under a skewed 
Student-t probability distribution for the innovations, and using Ris-
kmetrics as a benchmark. While the skewed Student-t APARCH model 
performs best in all cases, it is unclear whether the forecasting gain is 
enough to dominate over the computationally simpler skewed Student-t 
ARCH model. Bubak (2008), Tu et al. (2008), Kang and Yoon (2009) and 
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Diamandis et al. (2011), analyze Eastern and Central European stock 
markets, Asian stock markets, Asian emerging markets and developed 
and emerging markets, respectively. Comparing a wide range of univa-
riate conditional variance models, they show that models that incorpo-
rate an asymmetric distribution for return innovations tend to perform 
better than models with a symmetric distribution, in terms of both in-
sample and out-of-sample (one-day-ahead) VaR forecasts. Dendramis 
et al. (2014) show that the VaR performance of alternative parametric 
models like EGARCH or the Markov regime-switching model is enhan-
ced when combined with asymmetric probability distributions for re-
turn innovations. Tang and Shieh (2006) and Mabrouk and Saadi (2012) 
include Fractionally Integrated time varying GARCH models designed 
to capture not only volatility clustering, but also long memory in asset 
return volatility. Both papers consider three probability distributions, 
Normal, Student-t and skew Student-t. Tang and Shieh (2006) consider 
FIGARCH and HYGARCH (Hyperbolic GARCH) models, showing that for 
the three stock index futures considered, HYGARCH models with skewed 
Student-t distribution perform better based on the Kupiec LR tests. Ma-
brouk and Saadi (2012) conclude that the skewed Student-t FIAPARCH 
model outperforms the alternative GARCH and HYGARCH models be-
cause it can simultaneously account for fat tails, asymmetry, volatility 
clustering and long memory. However, given that the VaR forecasts re-
quired by the Basel accords are short run, the inclusion of long-memory 
is expected not to make any fundamental difference [see for example So 
and Yu (2006)]. So, the need to consider asymmetric probability distri-
butions for return innovations seems to be well established at this point. 
Recently, Leccadito et al. (2014) have compared the performance of a 
variety of volatility specifications and asymmetric distributions using 
multilevel VaR tests that apply independence and conditional coverage 
tests at different confidence levels.

As in the latter group of papers, we also examined the performance of 
both, the variance specification and the probability distribution of re-
turn innovations in VaR estimation. We consider a complex and flexible 
volatility model proposed by Hentschel (1995), FGARCH, which is an 
omnibus model that subsumes some of the most popular GARCH mo-
dels. To the best of our knowledge, there are no papers examining the 
performance of this model for VaR forecasting. Besides, we introduce 
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distributions rarely used in the literature on VaR performance, such as 
the skewed Generalized Error Distribution [Fernandez and Steel (1998)], 
Johnson SU distribution [Johnson (1949)], skewed Generalized-t [Theo-
dossiou (1998)] and Generalized Hyperbolic skew Student-t distribution 
(GHST) [Aas and Haff (2006)]. In the VaR literature, Johnson distribu�-
tions are suggested in Zangari (1996), Mina and Ulmer (1999), in Ris-
kMetrics Technical Document (1996) and Choi (2001), which examines 
empirically a GARCH model with Johnson innovations. Simonato (2011) 
documents the performance of the Johnson system relative to closely 
competing approaches, such as the Gram-Charlier and Cornish-Fisher 
approximations. He considers the case of Expected Shortfall compu-
tation without performing a backtesting analysis, just comparing the 
moments of the distributions and root-mean-squared errors. The GHST 
distribution has hardly been employed in financial applications because 
its estimation is computationally demanding. Nakajima and Omi (2012) 
use GHST distribution to perform a Bayesian analysis of a stochastic vo-
latility model. Among multivariate applications, Hu (2005) Multivariate 
Generalized Hyperbolic Distribution using the EM algorithm. Paolella 
and Polak (2015) also use the Generalized Hyperbolic distribution in a 
context of multivariate time series.

Relative to this ever increasing literature, we contribute in different ways: 
i) considering a set of probability distributions that have recently been 
suggested to be appropriate for capturing the skewness and kurtosis of 
financial data, but whose performance for VaR estimation has not been 
compared yet on a common dataset, ii) considering the APARCH and 
FGARCH volatility models with leverage that have also been recognized 
as being adequate for financial returns, iii) applying existing backtes-
ting procedures for the different VaR models to a wide array of assets of 
different nature, iv) comparing the relevance of the assumed probability 
distribution for return innovations and the volatility specification for 
VaR performance, v) introducing a dominance criterion to establish a 
ranking of models on the basis of their behavior under standard VaR 
validation tests, vi) using the dominance criterion and the Model Con-
fidence Set approach to search for robust conclusions on the preference 
of some probability distributions and volatility specifications.
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2.3.	Volatility models and probability distributions

Let xi, for t = 1, ..., T, be a time series of asset returns. It is convenient to 
break down the complete characterization of xi into three components: 
i) the conditional mean, µi, ii) the conditional variance, which contains 
a scale parameter that measures the dispersion of the distribution, σi 

2 
and iii) the shape parameters, which determine the form of a conditional 
distribution (e.g., skewness, kurtosis) within a general family of distribu-
tions. Thus, we may write
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unit variance. It follows a conditional distribution f with shape parameters 
that capture the possible asymmetry and fat-tailedness of returns, except 
in the case of the Normal distribution. Vector θ contains all the parameters 
associated with the conditional mean and variance and the conditional dis-
tribution.

An AR(1) model for the conditional mean return is sufficient to produce 
serially uncorrelated innovations for all assets. We consider three gene-
ral volatility models with leverage, GJR-GARCH, APARCH and FGARCH 
with a standard symmetric GARCH model as benchmark. As proba-
bility distributions for the innovations we compare the performance 
of skewed Student-t, skewed Generalized Error, unbounded Johnson SU, 
skewed Generalized-t and Generalized Hyperbolic skew Student-t distribu-
tions, with the Normal and symmetric Student-t distributions as benchmark.

In all models we jointly estimate by maximum likelihood the parame-
ters in the equation for the mean return, the equation for its conditional 
variance and the probability distribution for the return innovations. The 
exception is the skewed Generalized-t distribution, for which we use a 
two-step estimation method because of the numerical difficulty of esti-
mating all parameters jointly8.

8.  In that case, we first estimated the AR(1)-GARCH conditional mean-volatility model assuming a Generalized 
Error distribution (GED) for the innovations, as suggested by Bali and Theodossiou (2007). The parameters of 
the skewed Generalized-t distribution (SGT) were estimated in a second stage using the standardized returns 
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2.3.1.	 Volatility models

The conditional variance of GARCH(p,q) model (Bollerslev, 1986) is used 
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where ω, αi, γi, βi and δ are additional parameters to be estimated. The 
parameter γi reflects the leverage effect (–1 < γi < 1). A positive (resp. 
negative) value of γi means that past negative (resp. positive) shocks 
have a deeper impact on current conditional volatility than past positi-
ve (resp. negative) shocks. The parameter δ plays the role of a Box-Cox 
transformation of σt (δ > 0).

The APARCH equation is supposed to satisfy the following conditions, 
i) ω > 0 (since the variance is positive), αi ≥ 0, i = 1, 2, ..., q, βj ≥ 0, 
j = 1, 2, ..., p. When αi = 0, i = 1, 2 ,..., q, βj = 0, j = 1, 2, ..., p, then σ2 = ω, 
ii) 
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cause it has great flexibility, having as special cases, among others, 
those mentioned above.

The FGARCH model (Family GARCH) of Hentschel (1995) is an omnibus 
model which subsumes some of the most popular GARCH models. It is 
similar to the APARCH model, but more general, since it allows the de-
composition of the residuals in the conditional variance equation to be 
driven by different powers for zt and σt. It also allows for both shifts and 
rotations in the news impact curve, where the shift is the main source 
of asymmetry for small shocks while rotation drives the asymmetry for 
large shocks.
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, which ensures that 
neither arm of the rotated absolute value function crosses the abscissa. 
The parameter η2, however, is unrestricted in size and sign. The mag-
nitude and direction of a shift in the news impact curve are controlled 
by the parameter η2 while the magnitude and direction of a rotation in 
the news impact curve are controlled by the parameter η1. Other GARCH 
models only permit either a shift or a rotation, but not both. Allowing 
for shifts in the news impact curve, the FGARCH model is more flexible 
than previous models, being able to capture asymmetries in volatility 
even in the presence of small shocks.
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2.3.2.	 Probability distributions

To account for the excess skewness and kurtosis typical of financial 
data, the parametric volatility models presented in the previous section 
can be combined with skewed and leptokurtic distributions for return 
innovations. The skewed Student-t by Fernandez and Steel and Lambert 
and Laurent (2001)9 is
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 is the symmetric (unit variance) Student-t density and ξ is 
the skewness parameter10; m and s2 are, respectively the mean and the 
variance of the non-standardized skewed Student-t and are defined as,
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 is the absolute moments generating function. 
Note that when ξ = 1 and ν = + ∞ we get the skewness and the kurtosis  
of the Gaussian density. When ξ = 1 and ν > 2 we have the skewness and 
the kurtosis of the (standardized) Student-t distribution.

An alternative distribution for return innovations which can capture 
skewness and kurtosis can be based on the Generalized Error Distribu-
tion (GED) by Nelson (1991). According to Lambert and Laurent the in-
novation process zt is said to follow a (standardized) skewed Generalized 
error distribution, SGED(0,1, ξ, κ), if
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9.  Lambert and Laurent (2001) and Giot and Laurent (2003a) have shown that for various financial daily 
returns, it is realistic to assume that standardized innovations ẑt follows a skewed Student-t distribution.
10.  The skewness parameter 
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where 
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A very flexible distribution is the skewed Generalized-t distribution proposed by Theodossiou (1998). 
They developed a skewed version of the Generalized-t distribution introduced by McDonald and Newey 
(1988). 
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where 
 

                                                        
11 This parametrization is used by R rugarch package, which we use for estimating the parameters of our models. 
 

 is the symmetric (unit variance) Generalized Error distri-
bution, ξ is the skewness parameter, κ representing the shape parame-
ter and Г(·) is the gamma function. Mean (m) and standard deviation 
(s) are calculated in the same way as in the case of skewed Student-t 
distribution. As κ increases the density gets flatter and flatter while in 
the limit, as κ → ∞, the distribution tends toward the uniform distri-
bution. Special cases are the Normal when κ = 2 and the Laplace dis-
tribution when κ = 1. For κ > 2 the distribution is platykurtic and for  
κ < 2 it is leptokurtic.

Another alternative is the Johnson SU distribution. It was one of the 
distributions derived by Johnson (1949) based on translating the Nor-
mal distribution by certain functions. Letting Z ~ N (0,1), the standard 
Normal distribution, the random variable Y has the Johnson system of 
frequency curves if it is a transformation of Z by Z = γ + δg ((Y – ξ )/λ). 
The form of the resulting distribution depends on the choice of function 
g. When g(u) = sinh–1 (u), the distribution is unbounded, called the Jo-
hnson SU distribution. The parameters of the distribution are ξ, λ > 0, γ, 
δ > 0.

We use a parametrization11 of the original Johnson SU distribution, so 
that parameters ξ and λ are the mean and the standard deviation of the 
distribution. The parameter γ determines the skewness of the distribu-
tion with γ > 0 indicating positive skewness and γ < 0 negative skewness. 
The parameter δ determines the kurtosis of the distribution. δ should be 
positive and most likely in the region above 1.

The pdf of the Johnson’s SU, denoted here as 
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skewed, having one heavy and one semiheavy or more Gaussian-like tail. The skew ex- tensions to the 
Student-t distribution, like that of Fernandez and Steel, have two tails behaving as polynomials. This 
means that they fit heavy-tailed data well, but they do not handle substantial skewness, since that requires 
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1972), µμ, !, ! and ! determine the location, scale, skew and shape parameters, respectively. 
 
When ! = 0 the density !! !   can be recognized as that of noncentral Student-t distribution with ! 
degrees of freedom, expectation µμ and variance !!/(! − 2). 
 

2.4. The data 
 
We work with daily percentage returns on five groups of assets of different nature over the sample period 
1/4/2000-12/31/2015 (4173 observations). Daily returns are computed as 100 times the first difference of 
log prices, i.e. 100[!"(!!!!) − !"(!!)]%. The financial assets considered are: stock market indexes: 
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means that they fit heavy-tailed data well, but they do not handle substantial skewness, since that requires 
one heavy tail and one nonheavy tail. 
 
The probability density function of the Generalized Hyperbolic skew Student-t is given by 
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      ! = 0 

 

where Κ!(!)~
!
!!
exp  (−!) for ! → ±∞ is the modified Bessel function (Abramowitz and Stegun, 

1972), µμ, !, ! and ! determine the location, scale, skew and shape parameters, respectively. 
 
When ! = 0 the density !! !   can be recognized as that of noncentral Student-t distribution with ! 
degrees of freedom, expectation µμ and variance !!/(! − 2). 
 

2.4. The data 
 
We work with daily percentage returns on five groups of assets of different nature over the sample period 
1/4/2000-12/31/2015 (4173 observations). Daily returns are computed as 100 times the first difference of 
log prices, i.e. 100[!"(!!!!) − !"(!!)]%. The financial assets considered are: stock market indexes: 

 is the modified Bessel function 
(Abramowitz and Stegun, 1972), µ, δ, β and ν determine the location, 
scale, skew and shape parameters, respectively.
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When β = 0 the density fx(x) can be recognized as that of noncentral Student-t 
distribution with ν degrees of freedom, expectation µ and variance δ2/(ν – 2).

2.4.	The data

We work with daily percentage returns on five groups of assets of different 
nature over the sample period 1/4/2000-12/31/2015 (4173 observations). 
Daily returns are computed as 100 times the first difference of log prices, 
i.e. 100[ln(Pt+1) – ln(Pt)]%. The financial assets considered are: stock market 
indexes: IBEX 35 (€), NASDAQ 100 ($), FTSE 100 (£) and NIKKEI 225 (¥); 
individual stocks: IBM ($), SAN (€), AXA (€) and BP (£); interest rates: IRS 
5Y (€), interest rate of GERMAN BOND 10Y (€) and interest rate of US BOND 
10Y($); commodity prices CRUDE OIL BRENT ($ per barrel), NATURAL GAS 
($ per Million British Thermal Units), GOLD ($ per Troy Ounce) and SILVER 
(Cents $ per Troy Ounce) and exchange rates EUR/USD (€), GBP/USD (£), 
JPY/USD (¥) and AUD/USD (Australian $). The data were extracted from 
Datastream.

Table 13 reports descriptive statistics for daily returns. All the assets have 
mean and median returns close to zero. Returns on interest rates are ob-
tained as log changes in the price of implicit zero coupon bonds having 
the value of an interest rate as a yield. In terms of standard deviation, 
the sample range is higher for AUD/USD (18.7), IRS (18.0) and US BOND 
(17.1) and lower for JPY/USD (13.2), EUR/USD (13.4), SILVER (13.8) and 
the interest rate on the GERMAN BOND (13.9). The unconditional standard 
deviation is relatively similar for assets in the same class, except for com-
modities, where GAS (4.19) and OIL BRENT (2.28) are more volatile than 
GOLD (1.13) and SILVER (1.93). NASDAQ is more volatile than other stock 
market indexes and AXA is the most volatile stock. The $US exchange rate 
for the Australian dollar has higher standard deviation than the one for 
the euro, British pound or Yen. AUD/USD, SILVER, GOLD and NIKKEI have 
significant negative skewness, while GAS, AXA, JPY/USD and NASDAQ 
have high positive skewness. For all the assets considered the kurtosis is 
high, implying that the return distributions have much thicker tails than 
the Normal distribution. Kurtosis is especially large for AUD/USD, GAS, 
IBM and AXA while EUR/USD, while the interest rate of the GERMAN 
BOND and the JPY/USD exchange rate have lower kurtosis. Together with 
a large sample size, these values for skewness and kurtosis lead to a very 
large Jarque-Bera statistic, rejecting the assumption of Normality in all 
cases.
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Table 13: Descriptive statistics for daily percentage returns. Mean and median 
returns are in basis points. SD denotes the standard deviation, and J-B is the 
Jarque-Bera statistic to test for Normality. Sample: 01/04/2000-12/31/2015

Mean 
(bps.)

Median 
(bps.) Max Min S.D. Skewness Kurtosis J-B

IBEX -0.47 2.89 13.48 -9.58 1.49 0.08 7.93 4234.84

NASDAQ 0.46 3.68 17.20 -11.11 1.85 0.19 9.62 7652.53

FTSE -0.25 0 9.38 -9.26 1.21 -0.16 9.36 7042.80

NIKKEI 0.01 0 13.23 -12.11 1.50 -0.41 9.72 7979.58

IBM 0.42 0 12.26 -16.89 1.66 -0.07 11.63 12947.74

SAN 1.01 0 20.87 -15.19 2.19 0.15 9.11 6515.50

AXA 0.55 0 19.78 -20.35 2.67 0.27 10.09 8790.79

BP -1.35 0 10.58 -14.04 1.71 -0.13 7.81 4041.28

IRS 0.55 0.48 1.92 -1.86 0.21 -0.28 8.53 5367.17

GER BOND 1.11 0.97 3.39 -2.33 0.41 -0.09 5.97 1536.83

US BOND 0.98 0.96 4.53 -5.57 0.59 -0.22 7.96 4307.77

BRENT 0.98 0 17.97 -18.72 2.28 -0.19 8.26 4831.81

GAS 0.01 0 37.81 -28.90 4.19 0.56 12.81 16946.14

GOLD 3.10 0.01 6.86 -10.16 1.13 -0.41 8.81 5991.49

SILVER 2.26 0 13.66 -12.98 1.93 -0.57 8.62 5724.23

EUR/USD 0.16 0 4.62 -3.84 0.63 0.14 5.48 1091.11

GBP/USD -0.20 0 4.43 -3.88 0.57 -0.04 7.27 3170.80

JPY/USD -0.41 -0.99 4.61 -3.71 0.63 0.27 6.96 2779.74

AUD/USD 0.23 1.86 6.70 -8.83 0.83 -0.82 15.13 26058.43

Figure 9 displays daily percentage returns of each stock market indexes. It 
is clear from the graph that large price changes tend to also be followed 
by large changes, and small changes tend to follow small changes. Such 
volatility clustering is a property of asset prices that each index seems to 
exhibit. This graphical evidence is an indication of the presence of ARCH 
effect in our daily returns series that should be accounted for when esti-
mating Value at Risk. Figure 9 also displays QQ-plot of each index against 
the Normal distribution. These QQ-plot show that all returns distributions 
exhibit fat tails and also fat tails are not symmetric.
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Figure 9: Stock market indexes daily percentage returns and QQ-plot against the 
Normal distribution
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2.5.	Parameter estimates

To perform a VaR analysis we estimate four volatility models: GARCH, 
GJR-GARCH, APARCH and FGARCH under each of the different 
probability distributions assumed for the innovations: Normal, Student-t, 
skewed Student-t, skewed Generalized Error, unbounded Johnson SU, skewed 
Generalized-t and Generalized Hyperbolic skew Student-t distributions. An 
AR(1) model was specified for the conditional mean return in all cases. Most 
computations were performed with the rugarch package (version 1.3-4) 
of R software (version 3.1.1), designed for the estimation and forecast of 
various univariate ARCH-type models. The exception is the estimation 
of models under the skewed Generalized-t and Generalized Hyperbolic 
skew Student-t distributions for which we used the sgt package (version 
2.0) and the SkewHyperbolic package (version 0.3-2), respectively.

The Ljung-Box Q statistic for five lags computed on the standardized 
residuals does not show evidence of autocorrelation at 1% significance 
level except for GAS. But for one lag, GAS does not show autocorre-
lation at 1%, inasmuch as the p-values of the Q statistics are 0.0899, 
0.2621, 0.2440, 0.0452, 0.2288, 0.0447 and 0.4053 for N-, ST-, SKST-, 
SGED-, JSU-, SGT- and GHST-APARCH models, respectively. The same 
statistic computed with nine lags on the squared standardized residuals 
is not significant at 1% except for IBEX, SAN, IRS, GERMAN BOND, 
OIL, GOLD and SILVER. If we consider one lag, we obtain a Q statistic 
not significant at 1% significance level for IBEX and SAN but it remains 
significant for the remaining assets. A significant statistic indicates a 
possible problem with this model. In the lower panels of these tables we 
present the log-likelihood values of the four volatility models (GARCH, 
GJR-GARCH, APARCH and FGARCH). Their similarity suggests that the 
implied volatility specifications are very similar. The autoregressive 
effect in volatility is strong, with a β1 -parameter generally above 0.90, 
suggesting strong memory effects. The range of β1 is [0.88, 0.97] where 
the minimum is obtained for GAS and the maximum is obtained for 
EUR/USD. The coefficient γ1 is positive and statistically significant 
for most series, indicating the existence of a leverage effect for negati-
ve returns in the conditional variance specification. Estimates of γ1 are 
close to 1 for IBEX, NASDAQ and FTSE (in the GJR-GARCH model we 
also obtain an α1 (parameter close to 0). Compared to estimates for other 
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assets these values are very high, suggesting that only negative shocks 
contribute to volatility. We also obtain a γ1 estimate close to 1 in the 
APARCH model (equivalently α1 close to 0 in GJR-GARCH) with other 
indexes not considered in this chapter such as CAC 40, DAX 30 and S&P 
500 for this same sample period. We obtain the same parameter estima-
tes for these models and indexes using MatLab, R, Eviews and Gretl. The 
coefficient γ1 is negative and statistically significant for interest rates 
with some models, GOLD, SILVER and JPY/USD, indicating that a positi-
ve shock generates greater volatility than a negative shock of equal size.

It is also important that estimates of ξ in the skewed Student-t and 
skewed Generalized Error are less than 1 for most assets, suggesting 
the convenience of incorporating negative asymmetric features in the 
probability distribution in order to model innovations appropriately. A 
similar consideration applies to the skewness parameter γ of the Johnson 
SU, λ of the skewed Generalized-t and β of Generalized Hyperbolic skew 
Student-t, which in these cases the skewness parameters have negative 
sign. We obtain positive skewness with GAS and GOLD with some mo-
dels, EUR/USD and JPY/USD. According to kurtosis, the estimates of ν 
(Student-t and skewed Student-t) and δ (Johnson SU) are between 1.35 
and 12.50, capturing the heavy tails of the distribution. The smallest 
values are obtained with Johnson SU. The kurtosis parameters κ and 
p of skewed Generalized Error and skewed Generalized-t, respectively, 
measure the peakness of the distribution. For most assets and with most 
models, we obtain values lower than 2 indicating that the distribution is 
leptokurtic. Note that skewed Generalized-t have two parameters related 
to kurtosis, p and q. The parameters p and q control the peak and the 
tails of density, respectively. And the parameter q only has the degrees 
of freedom interpretation in case λ = 0 and p = 2. We obtain high q 
values accompanied with low p values for some assets, indicating in 
these cases that the kurtosis is mainly due to higher peak, rather than 
thicker tails of the distribution. Finally, δ takes values between 0.95 and 
2.33, being significantly different from 2 in most cases12. Our estimates 
of the APARCH model for the different asset classes (not shown in the 

12.  This result is in line with those of Taylor (1986), Schwert (1990) and Ding et al. (1993) who indicate 
that there is substantially more correlation among absolute returns than among squared returns, a reflection 
of the ’long memory’ of high-frequency financial returns.
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tables) suggest that, contrary to standard practice, we should model 
the conditional standard deviation for stock market indexes, individual 
stocks and metals, the conditional variance (δ = 2) for interest rates, and 
a value between conditional standard deviation and variance (δ = 1.5) 
for energy commodities and exchange rates. In summary, these results 
indicate the need for a model featuring a negative leverage effect in the 
equation for conditional volatility (conditional asymmetry) combined 
with an asymmetric distribution for the underlying error term (uncon-
ditional asymmetry) when representing stock market data. Furthermore, 
that equation should be specified for the right power of the conditional 
standard deviation.

Figure 10 displays, for each stock market index, histograms and QQ-
plots against theoretical quantiles for estimated standardized residuals 
(ẑt) of the SKST-APARCH model. We can observe that standardized in-
novations show, indeed, fat tails and negative skewness.

Figure 10: Histograms and QQ-plots of standardized innovations from SKST-APARCH 
model for stock market indexes against the skewed Student-t distribution

Figure 11 displays the news impact curves of different volatility models 
for IBM. We can observe that GARCH and GJRGARCH models are based 
on the variance equation, while APARCH and FGARCH models introdu-
ce the Box-Cox transformation in the conditional standard deviation, 
and the free parameter (δ in APARCH and λ in FGARCH) determines 
the shape of the transformation. For IBM the value of this parameter is 
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δ  = 1.01 and λ = 1.10 for the GHST-APARCH and GHST-FGARCH model, 
respectively. These parameters are significantly different from zero and 
two, but not from one. Furthermore, FGARCH model permit not only ro-
tations, like APARCH model, but also shifts of the news impact curve. As 
can be seen from Figure 11 d), the asymmetry caused by the shift η2 = 0.20 
is most pronounced for small shocks. For extremely large shocks, the 
asymmetric effect becomes a negligible part of the total response. On 
the other hand, the rotated news impact curve of Figure 11 c), γ = 0.61 
maintains the hypothesis that a zero shock results in the smallest increase 
of conditional variance. Additionally, the size of the asymmetric effect of 
small shocks is very small in absolute terms. The estimates of γ in 
APARCH model imply that negative shocks result in higher volatili-
ty than equally large positive shocks, which is in accordance with the  
“leverage effect”. In Figure 11 d) the shift η2 = 0.20 and rotation η1 = 0.42 
are combined in one news impact curve. Both parameters are signifi-
cant. By appropriately shifting and rotating the news impact curve, it 
is possible to have asymmetry for small shocks, a roughly symmetric 
response for moderate shocks, and asymmetry for very large shocks.

Figure 11: News impact curves of different volatility model for IBM
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2.6.	Fitting the data

VaR models are usually evaluated according to the performance of their VaR 
estimates using appropriate testing procedures. However, the ability of a 
VaR model to reproduce the main characteristics of return data is hardly 
ever examined. A possible justification for such inattention is the argument 
that good VaR estimates have to do just with the quality of the fit to the 
tails of the distribution of returns. A good overall fit might not be all that 
interesting because it might be obtained at the expense of not fitting so 
well the distribution tails. However, the fit to the tail of return distribution 
is usually not examined either. The fact is that it is unclear whether a 
good overall fit of the return distribution helps to produce good VaR 
estimates or whether it should be enough to care about the fit to the tail 
of the distribution, and we want to throw some light into that question. 
In particular, if fitting the tail distribution is what matters, that might 
explain why the type of models considered in extreme value theory tend 
to beat other alternatives in VaR estimation.

We examine in this section the extent to which each model fits the 
return data, and we will later check whether the models with a better 
overall fit lead to better VaR estimates. We start by checking the extent 
to which each model fits the likelihood of return data. After that, we 
examine the ability of each model to fit the main sample moments of 
returns. To evaluate the fit to the distribution of returns Monte Carlo 
simulation is needed, as explained below.

2.6.1.	 Likelihood ratio tests

Models with FGARCH volatility, combined with JSU and SGED distri-
butions for stock market indexes, with SKST and SGED distributions for 
individual stocks, with JSU and GHST distributions for interest rates, with 
SGED for commodities and with SGED and JSU for exchange rates, often 
achieve the highest log-likelihood. Likelihood ratio tests in Table 14 show a 
superiority of the FGARCH specification over the APARCH, GJR-GARCH 
and the symmetric GARCH specifications for stock market indexes. In all 
comparisons in the table, the more restricted model appears to the left. 
At 5% significance, the test clearly favors the APARCH model against the 
GJRGARCH model and the FGARCH model against the APARCH. Indeed, 
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for stock market indexes, individual stocks and commodities the FGARCH 
model is preferred to the APARCH model whereas for interest rates and 
exchange rates the APARCH model is preferred. Overall, FGARCH and 
APARCH are the best models according to this criterion.

Table 14: Likelihood ratio tests of volatility specifications for stock market 
indexes

Test statistic IBEX NASDAQ FTSE NIKKEI

N-GARCH vs N-APARCH 205.186 138.348 195.112 78.296

N-GJRGARCH vs N-APARCH 30.148 11.934 15.908 9.164

N-APARCH vs N-FGARCH 21.816 52.104 37.834 47.568

ST-GARCH vs ST-APARCH 159.688 119.084 248.592 79.222

ST-GJRGARCH vs ST-APARCH 25.748 15.412 18.558 17.354

ST-APARCH vs ST-FGARCH 8.762 27.646 32.422 44.818

SKST-GARCH vs SKST-APARCH 167.376 134.806 186.022 77.49

SKST-GJRGARCH vs SKST-APARCH 26.388 18.518 19.916 17.154

SKST-APARCH vs SKST-FGARCH 11.064 38.588 33.902 46.58

SGED-GARCH vs SGED-APARCH 163.090 123.216 137.098 66.682

SGED-GJRGARCH vs SGED-APARCH 24.716 15.794 -19.958 13.778

SGED-APARCH vs SGED-FGARCH 12.574 19.094 30.93 40.332

JSU-GARCH vs JSU-APARCH 166.902 135.970 184.646 74.574

JSU-GJRGARCH vs JSU-APARCH 25.992 19.584 19.006 16.460

JSU-APARCH vs JSU-FGARCH 1.216 14.958 33.778 47.004

SGT-GARCH vs SGT-APARCH 154.116 108.794 157.816 66.148

SGT-GJRGARCH vs SGT-APARCH 24.028 12.516 15.348 13.442

SGT-APARCH vs SGT-FGARCH 10.89 27.402 30.93 38.618

GHST-GARCH vs GHST-APARCH 168.844 148.648 180.538 71.766

GHST-GJRGARCH vs GHST-APARCH 34.134 60.512 19.006 16.460

GHST-APARCH vs GHST-FGARCH -6.826 13.926 20.554 57.444

Note: The null hypothesis is rejected, except where indicated by boldface
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2.6.2.	 Fitting standardized innovations

2.6.2.1. Fitting the empirical distribution of return innovations

Table 15 reports the results obtained when comparing the empirical dis-
tribution of estimated innovations to the theoretical distribution used in 
estimation for the four stock market indexes.13 We use the Kolmogorov-
Smirnov (KS) test (Kolmogorov, 1933, Smirnov, 1939 and Massey, 1951), 
which quantifies the distance between the empirical distribution function 
of standardized innovation and the cumulative distribution function of 
the reference distribution, and the Chi-square (Chi2) test (Pearson, 1900) 
applied to a partition of the return data range into 10 bins.14 The null 
distribution of these statistics is calculated under the null hypothesis 
that the sample is drawn from the reference distribution. These tests 
suggest that models with an asymmetric distribution for the innovations 
are to be preferred. Test statistics also tend to be smaller for the APARCH 
and FGARCH volatility specifications.

According to the KS test, models with N distributions fits the data 
well 11 out of 76 cases (4 volatility models by 19 assets), ST fits the 
data well in 53 cases, SKST in 54, SGED in 59, JSU in 47, SGT in 62 
and GHST in 47 cases. Regarding volatility models, distributions with 
GARCH model fit the data well 79 out of 133 cases (7 probability 
distributions by 19 assets), GJRGARCH and APARCH fit the data well 
in 85 cases and FGARCH in 84 cases. According to the Chi2 test, 
models with N distributions fits the data well 1 out of 76 cases, ST fits 
the data well in 20 cases, SKST and SGED in 32, JSU and SGT in 30 
and GHST in 18 cases. Respect to volatility models, distributions with 
GARCH, APARCH and FGARCH models fit the data well 40 out of 133 
cases and GJRGARCH in 43 cases. To sum up, the SGED and SGT are 
preferred to fit the innovations and GJRGARCH and APARCH to model 
the volatility.

13.  Results for other assets are available on request.
14.  The number of bins affects the results of the Pearson test.
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Table 15: Goodness-of-fit tests for standardized innovations of stock market 
indexes. Figures in parentheses denote p-values

IBEX35 NASDAQ100 FTSE100 NIKKEI225

KS Chi2 KS Chi2 KS Chi2 KS Chi2

N-GARCH 0.039 
(0.000)

243110 
(0.000)

0.043 
(0.000)

86.329 
(0.000)

0.032 
(0.000)

107.345 
(0.000)

0.051 
(0.000)

243267 
(0.000)

ST-GARCH 0.022 
(0.038)

21.348 
(0.011)

0.028 
(0.002)

17.048 
(0.048)

0.020 
(0.083)

37.191 
(0.000)

0.039 
(0.000)

21.667 
(0.010)

SKST-GARCH 0.027 
(0.005)

9.892 
(0.359)

0.030 
(0.001)

7.344 
(0.601)

0.031 
(0.001)

15.078 
(0.089)

0.038 
(0.000)

13.744 
(0.132)

SGED-GARCH 0.022 
(0.035)

50.690 
(0.000)

0.023 
(0.027)

5.633 
(0.776)

0.027 
(0.005)

17.152 
(0.046)

0.026 
(0.006)

39.174 
(0.000)

JSU-GARCH 0.026 
(0.006)

10.010 
(0.349)

0.030 
(0.001)

6.336 
(0.706)

0.031 
(0.001)

13.381 
(0.146)

0.041 
(0.000)

14.011 
(0.122)

SGT-GARCH 0.029 
(0.001)

23.392 
(0.005)

0.028 
(0.003)

6.001 
(0.740)

0.034 
(0.000)

17.480 
(0.042)

0.028 
(0.003)

39.408 
(0.000)

GHST-GARCH 0.021 
(0.056)

8.799 
(0.456)

0.028 
(0.003)

7.665 
(0.568)

0.019 
(0.099)

22.349 
(0.008)

0.037 
(0.000)

10.983 
(0.277)

N-GJRGARCH 0.034 
(0.000)

228.860 
(0.000)

0.047 
(0.000)

39.537 
(0.000)

0.039 
(0.000)

117.613 
(0.000)

0.048 
(0.000)

971626 
(0.000)

ST-GJRGARCH 0.024 
(0.020)

49.752 
(0.000)

0.031 
(0.001)

40.861 
(0.000)

0.029 
(0.002)

57.236 
(0.000)

0.038 
(0.000)

73.794 
(0.000)

SKST-
GJRGARCH

0.018 
(0.129)

14.610 
(0.102)

0.022 
(0.041)

12.553 
(0.184)

0.016 
(0.222)

8.206 
(0.514)

0.036 
(0.000)

43.630 
(0.000)

SGED-
GJRGARCH

0.015 
(0.338)

21.714 
(0.010)

0.017 
(0.166)

17.948 
(0.036)

0.016 
(0.262)

9.942 
(0.355)

0.030 
(0.001)

127.937 
(0.000)

JSU-
GJRGARCH

0.017 
(0.155)

14.262 
(0.113)

0.020 
(0.072)

12.947 
(0.165)

0.016 
(0.248)

5.923 
(0.748)

0.039 
(0.000)

38.568 
(0.000)

SGT-
GJRGARCH

0.021 
(0.046)

20.689 
(0.014)

0.025 
(0.012)

20.488 
(0.015)

0.026 
(0.008)

11.848 
(0.222)

0.029 
(0.002)

133.807 
(0.003)

GHST-
GJRGARCH

0.027 
(0.004)

18.724 
(0.028)

0.033 
(0.000)

12.947 
(0.165)

0.028 
(0.003)

28.488 
(0.001)

0.035 
(0.000)

24.784 
(0.000)

N-APARCH 0.036 
(0.000)

248.980 
(0.000)

0.047 
(0.000)

141.086 
(0.000)

0.042 
(0.000)

111.868 
(0.000)

0.048 
(0.000)

243023 
(0.000)

ST-APARCH 0.026 
(0.006)

48.544 
(0.000)

0.030 
(0.001)

29.656 
(0.001)

0.031 
(0.001)

44.470 
(0.000)

0.038 
(0.000)

47.912 
(0.000)
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IBEX35 NASDAQ100 FTSE100 NIKKEI225

KS Chi2 KS Chi2 KS Chi2 KS Chi2
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(0.956)
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(0.000)
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(0.016)
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(0.114)
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(0.003)
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(0.162)
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(0.744)
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(0.000)

GHST-APARCH 0.030 
(0.001)

22.105 
(0.009)

0.031 
(0.001)

8.823 
(0.454)

0.030 
(0.001)

21.973 
(0.009)

0.037 
(0.000)

20.293 
(0.016)

N-FGARCH 0.037 
(0.000)

132.260 
(0.000)

0.047 
(0.000)

97.099 
(0.000)

0.042 
(0.000)

106.330 
(0.000)

0.051 
(0.000)

971730 
(0.000)

ST-FGARCH 0.027 
(0.004)

14.633 
(0.102)

0.025 
(0.011)

32.188 
(0.000)

0.033 
(0.000)

44.745 
(0.000)

0.037 
(0.000)

60.110 
(0.000)

SKST-FGARCH 0.019 
(0.102)

4.929 
(0.840)

0.022 
(0.035)

15.5601
(0.077)

0.019 
(0.088)

2.967 
(0.966)

0.034 
(0.000)

27.787 
(0.001)

SGED-FGARCH 0.018 
(0.142)

10.078 
(0.344)

0.023 
(0.029)

14.149 
(0.117)

0.017 
(0.158)

2.206 
(0.988)

0.032 
(0.000)

110.135 
(0.000)

JSU-FGARCH 0.019 
(0.097)

4.467
(0.878)

0.026 
(0.007)

12.654 
(0.179)

0.020 
(0.082)

2.393 
(0.984)

0.035 
(0.000)

22.448 
(0.008)

SGT-FGARCH 0.018 
(0.123)

7.566 
(0.578)

0.028 
(0.002)

14.121 
(0.118)

0.023 
(0.022)

3.179 
(0.957)

0.027 
(0.005)

121.760 
(0.000)

GHST-FGARCH 0.026 
(0.008)

15.856 
(0.070)

0.032 
(0.000)

33.125 
(0.000)

0.032 
(0.000)

25.915 
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To compare the adequacy of the different distributions we can also em-
ploy out-of-sample density forecasts, as proposed by Diebold, Gunther 
and Tay (1998) (DGT). Let 
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GHST in 18 cases. Respect to volatility models, distributions with GARCH, APARCH and FGARCH 
models fit the data well 40 out of 133 cases and GJR- GARCH in 43 cases. To sum up, the SGED and 
SGT are preferred to fit the innovations and GJRGARCH and APARCH to model the volatility. 
  

 IBEX35 NASDAQ100 FTSE100 NIKKEI225 
 KS Chi2 KS Chi2 KS Chi2 KS Chi2 

N-GARCH 0.039 (0.000) 243110 (0.000) 0.043 (0.000) 86.329 (0.000) 0.032 (0.000) 107.345 (0.000) 0.051 (0.000) 243267 (0.000) 
ST-GARCH 0.022 (0.038) 21.348 (0.011) 0.028 (0.002) 17.048 (0.048) 0.020 (0.083) 37.191 (0.000) 0.039 (0.000) 21.667 (0.010) 
SKST-GARCH 0.027 (0.005) 9.892 (0.359) 0.030 (0.001) 7.344 (0.601) 0.031 (0.001) 15.078 (0.089) 0.038 (0.000) 13.744 (0.132) 
SGED-GARCH 0.022 (0.035) 50.690 (0.000) 0.023 (0.027) 5.633 (0.776) 0.027 (0.005) 17.152 (0.046) 0.026 (0.006) 39.174 (0.000) 
JSU-GARCH 0.026 (0.006) 10.010 (0.349) 0.030 (0.001) 6.336 (0.706) 0.031 (0.001) 13.381 (0.146) 0.041 (0.000) 14.011 (0.122) 
SGT-GARCH 0.029 (0.001) 23.392 (0.005) 0.028 (0.003) 6.001 (0.740) 0.034 (0.000) 17.480 (0.042) 0.028 (0.003) 39.408 (0.000) 
GHST-GARCH 0.021 (0.056) 8.799 (0.456) 0.028 (0.003) 7.665 (0.568) 0.019 (0.099) 22.349 (0.008) 0.037 (0.000) 10.983 (0.277) 
N-GJRGARCH 0.034 (0.000) 228.860 (0.000) 0.047 (0.000) 39.537 (0.000) 0.039 (0.000) 117.613 (0.000) 0.048 (0.000) 971626 (0.000) 
ST-GJRGARCH 0.024 (0.020) 49.752 (0.000) 0.031 (0.001) 40.861 (0.000) 0.029 (0.002) 57.236 (0.000) 0.038 (0.000) 73.794 (0.000) 
SKST-GJRGARCH 0.018 (0.129) 14.610 (0.102) 0.022 (0.041) 12.553 (0.184) 0.016 (0.222) 8.206 (0.514) 0.036 (0.000) 43.630 (0.000) 
SGED-GJRGARCH 0.015 (0.338) 21.714 (0.010) 0.017 (0.166) 17.948 (0.036) 0.016 (0.262) 9.942 (0.355) 0.030 (0.001) 127.937 (0.000) 
JSU-GJRGARCH 0.017 (0.155) 14.262 (0.113) 0.020 (0.072) 12.947 (0.165) 0.016 (0.248) 5.923 (0.748) 0.039 (0.000) 38.568 (0.000) 
SGT-GJRGARCH 0.021 (0.046) 20.689 (0.014) 0.025 (0.012) 20.488 (0.015) 0.026 (0.008) 11.848 (0.222) 0.029 (0.002) 133.807 (0.003) 
GHST-GJRGARCH 0.027 (0.004) 18.724 (0.028) 0.033 (0.000) 12.947 (0.165) 0.028 (0.003) 28.488 (0.001) 0.035 (0.000) 24.784 (0.000) 
N-APARCH 0.036 (0.000) 248.980 (0.000) 0.047 (0.000) 141.086 (0.000) 0.042 (0.000) 111.868 (0.000) 0.048 (0.000) 243023 (0.000) 
ST-APARCH 0.026 (0.006) 48.544 (0.000) 0.030 (0.001) 29.656 (0.001) 0.031 (0.001) 44.470 (0.000) 0.038 (0.000) 47.912 (0.000) 
SKST-APARCH 0.019 (0.093) 15.015 (0.091) 0.020 (0.062) 2.589 (0.978) 0.019 (0.110) 3.208 (0.956) 0.037 (0.000) 20.405 (0.016) 
SGED-APARCH 0.019 (0.114) 24.748 (0.003) 0.017 (0.162) 3.676 (0.931) 0.015 (0.275) 5.960 (0.744) 0.031 (0.001) 54.437 (0.000) 
JSU-APARCH 0.020 (0.081) 16.025 (0.066) 0.020 (0.064) 1.759 (0.995) 0.018 (0.120) 3.576 (0.937) 0.038 (0.000) 15.731 (0.073) 
SGT-APARCH 0.019 (0.094) 21.066 (0.012) 0.026 (0.008) 5.237 (0.813) 0.025 (0.013) 6.753 (0.663) 0.029 (0.002) 60.521 (0.000) 
GHST-APARCH 0.030 (0.001) 22.105 (0.009) 0.031 (0.001) 8.823 (0.454) 0.030 (0.001) 21.973 (0.009) 0.037 (0.000) 20.293 (0.016) 
N-FGARCH 0.037 (0.000) 132.260 (0.000) 0.047 (0.000) 97.099 (0.000) 0.042 (0.000) 106.330 (0.000) 0.051 (0.000) 971730 (0.000) 
ST-FGARCH 0.027 (0.004) 14.633 (0.102) 0.025 (0.011) 32.188 (0.000) 0.033 (0.000) 44.745 (0.000) 0.037 (0.000) 60.110 (0.000) 
SKST-FGARCH 0.019 (0.102) 4.929 (0.840) 0.022 (0.035) 15.5601(0.077) 0.019 (0.088) 2.967 (0.966) 0.034 (0.000) 27.787 (0.001) 
SGED-FGARCH 0.018 (0.142) 10.078 (0.344) 0.023 (0.029) 14.149 (0.117) 0.017 (0.158) 2.206 (0.988) 0.032 (0.000) 110.135 (0.000) 
JSU-FGARCH 0.019 (0.097) 4.467(0.878) 0.026 (0.007) 12.654 (0.179) 0.020 (0.082) 2.393 (0.984) 0.035 (0.000) 22.448 (0.008) 
SGT-FGARCH 0.018 (0.123) 7.566 (0.578) 0.028 (0.002) 14.121 (0.118) 0.023 (0.022) 3.179 (0.957) 0.027 (0.005) 121.760 (0.000) 
GHST-FGARCH 0.026 (0.008) 15.856 (0.070) 0.032 (0.000) 33.125 (0.000) 0.032 (0.000) 25.915 (0.002) 0.037 (0.000) 25.226 (0.003) 

 
Table 15: Goodness-of-fit tests for standardized innovations of stock market indexes. Figures in 

brackets denote p-values. 
 

To compare the adequacy of the different distributions we can also employ out-of- sample density 
forecasts, as proposed by Diebold, Gunther and Tay (1998) (DGT). Let !!(!!|Ω!)!!!!  be a sequence of ! 
one-step-ahead density forecasts produce by a given model, where  Ω! is the conditioning information set, 
and !!(!!|Ω!)!!!!  the sequence of densities defining the Data Generating Process !! (which is never 
observed).  The null hypothesis is !!:  !!(!!|Ω!)!!!! = !!(!!|Ω!)!!!! . DGT use the fact that under null 
hypothesis, the probability integral transform !! = !! ! !"

!
!!  is i.i.d. with a Uniform(0,1) distribution. 

To check !!, they propose to use an independence test for i.i.d. U(0,1). The i.i.d.-ness property of !! 
can be evaluated by plotting a histogram of !!. A humped shape of the !-histogram would indicate that 
the issued forecasts are too narrow and that the tails of the true density are not accounted for. On the other 
hand, a U-shape of the histogram would suggest that the model issues forecasts that either under- or 
overestimate too frequently [Bauwens, Giot, Grammig and Veredas (2000)].  
 
Figures 12 a) and 12 b) show a sample of such histograms for the assets in our data set. The humped 
shape of the histograms shows that symmetrical distributions are not suitable to model the OIL and US 
BOND 10Y returns. Figures 12 c) and 12 d) show that the skewed Generalized Error distribution is not 
suitable for NIKKEI 225. It is appropriate for JPY/USD because its probability integral transform is 
Uniformly distributed. In 12 e) the Johnson SU distribution is also appropriate for AUD/USD. Figure 12 f) 
shows that the assumption of a Generalized Hyperbolic skew Student-t for the innovation is not 
appropriate for SAN. These results are consistent with the goodness-of-fit tests previously carried out. For 
the rest of assets, the results are similar, the symmetrical distributions and the Generalized Hyperbolic 
skew Student-t for the innovations are not appropriate for most of the assets whereas skewed Student-t, 
skewed Generalized Error and Johnson SU are suitable. 
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SKST-APARCH 0.019 (0.093) 15.015 (0.091) 0.020 (0.062) 2.589 (0.978) 0.019 (0.110) 3.208 (0.956) 0.037 (0.000) 20.405 (0.016) 
SGED-APARCH 0.019 (0.114) 24.748 (0.003) 0.017 (0.162) 3.676 (0.931) 0.015 (0.275) 5.960 (0.744) 0.031 (0.001) 54.437 (0.000) 
JSU-APARCH 0.020 (0.081) 16.025 (0.066) 0.020 (0.064) 1.759 (0.995) 0.018 (0.120) 3.576 (0.937) 0.038 (0.000) 15.731 (0.073) 
SGT-APARCH 0.019 (0.094) 21.066 (0.012) 0.026 (0.008) 5.237 (0.813) 0.025 (0.013) 6.753 (0.663) 0.029 (0.002) 60.521 (0.000) 
GHST-APARCH 0.030 (0.001) 22.105 (0.009) 0.031 (0.001) 8.823 (0.454) 0.030 (0.001) 21.973 (0.009) 0.037 (0.000) 20.293 (0.016) 
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ST-FGARCH 0.027 (0.004) 14.633 (0.102) 0.025 (0.011) 32.188 (0.000) 0.033 (0.000) 44.745 (0.000) 0.037 (0.000) 60.110 (0.000) 
SKST-FGARCH 0.019 (0.102) 4.929 (0.840) 0.022 (0.035) 15.5601(0.077) 0.019 (0.088) 2.967 (0.966) 0.034 (0.000) 27.787 (0.001) 
SGED-FGARCH 0.018 (0.142) 10.078 (0.344) 0.023 (0.029) 14.149 (0.117) 0.017 (0.158) 2.206 (0.988) 0.032 (0.000) 110.135 (0.000) 
JSU-FGARCH 0.019 (0.097) 4.467(0.878) 0.026 (0.007) 12.654 (0.179) 0.020 (0.082) 2.393 (0.984) 0.035 (0.000) 22.448 (0.008) 
SGT-FGARCH 0.018 (0.123) 7.566 (0.578) 0.028 (0.002) 14.121 (0.118) 0.023 (0.022) 3.179 (0.957) 0.027 (0.005) 121.760 (0.000) 
GHST-FGARCH 0.026 (0.008) 15.856 (0.070) 0.032 (0.000) 33.125 (0.000) 0.032 (0.000) 25.915 (0.002) 0.037 (0.000) 25.226 (0.003) 

 
Table 15: Goodness-of-fit tests for standardized innovations of stock market indexes. Figures in 

brackets denote p-values. 
 

To compare the adequacy of the different distributions we can also employ out-of- sample density 
forecasts, as proposed by Diebold, Gunther and Tay (1998) (DGT). Let !!(!!|Ω!)!!!!  be a sequence of ! 
one-step-ahead density forecasts produce by a given model, where  Ω! is the conditioning information set, 
and !!(!!|Ω!)!!!!  the sequence of densities defining the Data Generating Process !! (which is never 
observed).  The null hypothesis is !!:  !!(!!|Ω!)!!!! = !!(!!|Ω!)!!!! . DGT use the fact that under null 
hypothesis, the probability integral transform !! = !! ! !"

!
!!  is i.i.d. with a Uniform(0,1) distribution. 

To check !!, they propose to use an independence test for i.i.d. U(0,1). The i.i.d.-ness property of !! 
can be evaluated by plotting a histogram of !!. A humped shape of the !-histogram would indicate that 
the issued forecasts are too narrow and that the tails of the true density are not accounted for. On the other 
hand, a U-shape of the histogram would suggest that the model issues forecasts that either under- or 
overestimate too frequently [Bauwens, Giot, Grammig and Veredas (2000)].  
 
Figures 12 a) and 12 b) show a sample of such histograms for the assets in our data set. The humped 
shape of the histograms shows that symmetrical distributions are not suitable to model the OIL and US 
BOND 10Y returns. Figures 12 c) and 12 d) show that the skewed Generalized Error distribution is not 
suitable for NIKKEI 225. It is appropriate for JPY/USD because its probability integral transform is 
Uniformly distributed. In 12 e) the Johnson SU distribution is also appropriate for AUD/USD. Figure 12 f) 
shows that the assumption of a Generalized Hyperbolic skew Student-t for the innovation is not 
appropriate for SAN. These results are consistent with the goodness-of-fit tests previously carried out. For 
the rest of assets, the results are similar, the symmetrical distributions and the Generalized Hyperbolic 
skew Student-t for the innovations are not appropriate for most of the assets whereas skewed Student-t, 
skewed Generalized Error and Johnson SU are suitable. 
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GHST in 18 cases. Respect to volatility models, distributions with GARCH, APARCH and FGARCH 
models fit the data well 40 out of 133 cases and GJR- GARCH in 43 cases. To sum up, the SGED and 
SGT are preferred to fit the innovations and GJRGARCH and APARCH to model the volatility. 
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SGED-GJRGARCH 0.015 (0.338) 21.714 (0.010) 0.017 (0.166) 17.948 (0.036) 0.016 (0.262) 9.942 (0.355) 0.030 (0.001) 127.937 (0.000) 
JSU-GJRGARCH 0.017 (0.155) 14.262 (0.113) 0.020 (0.072) 12.947 (0.165) 0.016 (0.248) 5.923 (0.748) 0.039 (0.000) 38.568 (0.000) 
SGT-GJRGARCH 0.021 (0.046) 20.689 (0.014) 0.025 (0.012) 20.488 (0.015) 0.026 (0.008) 11.848 (0.222) 0.029 (0.002) 133.807 (0.003) 
GHST-GJRGARCH 0.027 (0.004) 18.724 (0.028) 0.033 (0.000) 12.947 (0.165) 0.028 (0.003) 28.488 (0.001) 0.035 (0.000) 24.784 (0.000) 
N-APARCH 0.036 (0.000) 248.980 (0.000) 0.047 (0.000) 141.086 (0.000) 0.042 (0.000) 111.868 (0.000) 0.048 (0.000) 243023 (0.000) 
ST-APARCH 0.026 (0.006) 48.544 (0.000) 0.030 (0.001) 29.656 (0.001) 0.031 (0.001) 44.470 (0.000) 0.038 (0.000) 47.912 (0.000) 
SKST-APARCH 0.019 (0.093) 15.015 (0.091) 0.020 (0.062) 2.589 (0.978) 0.019 (0.110) 3.208 (0.956) 0.037 (0.000) 20.405 (0.016) 
SGED-APARCH 0.019 (0.114) 24.748 (0.003) 0.017 (0.162) 3.676 (0.931) 0.015 (0.275) 5.960 (0.744) 0.031 (0.001) 54.437 (0.000) 
JSU-APARCH 0.020 (0.081) 16.025 (0.066) 0.020 (0.064) 1.759 (0.995) 0.018 (0.120) 3.576 (0.937) 0.038 (0.000) 15.731 (0.073) 
SGT-APARCH 0.019 (0.094) 21.066 (0.012) 0.026 (0.008) 5.237 (0.813) 0.025 (0.013) 6.753 (0.663) 0.029 (0.002) 60.521 (0.000) 
GHST-APARCH 0.030 (0.001) 22.105 (0.009) 0.031 (0.001) 8.823 (0.454) 0.030 (0.001) 21.973 (0.009) 0.037 (0.000) 20.293 (0.016) 
N-FGARCH 0.037 (0.000) 132.260 (0.000) 0.047 (0.000) 97.099 (0.000) 0.042 (0.000) 106.330 (0.000) 0.051 (0.000) 971730 (0.000) 
ST-FGARCH 0.027 (0.004) 14.633 (0.102) 0.025 (0.011) 32.188 (0.000) 0.033 (0.000) 44.745 (0.000) 0.037 (0.000) 60.110 (0.000) 
SKST-FGARCH 0.019 (0.102) 4.929 (0.840) 0.022 (0.035) 15.5601(0.077) 0.019 (0.088) 2.967 (0.966) 0.034 (0.000) 27.787 (0.001) 
SGED-FGARCH 0.018 (0.142) 10.078 (0.344) 0.023 (0.029) 14.149 (0.117) 0.017 (0.158) 2.206 (0.988) 0.032 (0.000) 110.135 (0.000) 
JSU-FGARCH 0.019 (0.097) 4.467(0.878) 0.026 (0.007) 12.654 (0.179) 0.020 (0.082) 2.393 (0.984) 0.035 (0.000) 22.448 (0.008) 
SGT-FGARCH 0.018 (0.123) 7.566 (0.578) 0.028 (0.002) 14.121 (0.118) 0.023 (0.022) 3.179 (0.957) 0.027 (0.005) 121.760 (0.000) 
GHST-FGARCH 0.026 (0.008) 15.856 (0.070) 0.032 (0.000) 33.125 (0.000) 0.032 (0.000) 25.915 (0.002) 0.037 (0.000) 25.226 (0.003) 

 
Table 15: Goodness-of-fit tests for standardized innovations of stock market indexes. Figures in 

brackets denote p-values. 
 

To compare the adequacy of the different distributions we can also employ out-of- sample density 
forecasts, as proposed by Diebold, Gunther and Tay (1998) (DGT). Let !!(!!|Ω!)!!!!  be a sequence of ! 
one-step-ahead density forecasts produce by a given model, where  Ω! is the conditioning information set, 
and !!(!!|Ω!)!!!!  the sequence of densities defining the Data Generating Process !! (which is never 
observed).  The null hypothesis is !!:  !!(!!|Ω!)!!!! = !!(!!|Ω!)!!!! . DGT use the fact that under null 
hypothesis, the probability integral transform !! = !! ! !"

!
!!  is i.i.d. with a Uniform(0,1) distribution. 

To check !!, they propose to use an independence test for i.i.d. U(0,1). The i.i.d.-ness property of !! 
can be evaluated by plotting a histogram of !!. A humped shape of the !-histogram would indicate that 
the issued forecasts are too narrow and that the tails of the true density are not accounted for. On the other 
hand, a U-shape of the histogram would suggest that the model issues forecasts that either under- or 
overestimate too frequently [Bauwens, Giot, Grammig and Veredas (2000)].  
 
Figures 12 a) and 12 b) show a sample of such histograms for the assets in our data set. The humped 
shape of the histograms shows that symmetrical distributions are not suitable to model the OIL and US 
BOND 10Y returns. Figures 12 c) and 12 d) show that the skewed Generalized Error distribution is not 
suitable for NIKKEI 225. It is appropriate for JPY/USD because its probability integral transform is 
Uniformly distributed. In 12 e) the Johnson SU distribution is also appropriate for AUD/USD. Figure 12 f) 
shows that the assumption of a Generalized Hyperbolic skew Student-t for the innovation is not 
appropriate for SAN. These results are consistent with the goodness-of-fit tests previously carried out. For 
the rest of assets, the results are similar, the symmetrical distributions and the Generalized Hyperbolic 
skew Student-t for the innovations are not appropriate for most of the assets whereas skewed Student-t, 
skewed Generalized Error and Johnson SU are suitable. 
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GHST in 18 cases. Respect to volatility models, distributions with GARCH, APARCH and FGARCH 
models fit the data well 40 out of 133 cases and GJR- GARCH in 43 cases. To sum up, the SGED and 
SGT are preferred to fit the innovations and GJRGARCH and APARCH to model the volatility. 
  

 IBEX35 NASDAQ100 FTSE100 NIKKEI225 
 KS Chi2 KS Chi2 KS Chi2 KS Chi2 

N-GARCH 0.039 (0.000) 243110 (0.000) 0.043 (0.000) 86.329 (0.000) 0.032 (0.000) 107.345 (0.000) 0.051 (0.000) 243267 (0.000) 
ST-GARCH 0.022 (0.038) 21.348 (0.011) 0.028 (0.002) 17.048 (0.048) 0.020 (0.083) 37.191 (0.000) 0.039 (0.000) 21.667 (0.010) 
SKST-GARCH 0.027 (0.005) 9.892 (0.359) 0.030 (0.001) 7.344 (0.601) 0.031 (0.001) 15.078 (0.089) 0.038 (0.000) 13.744 (0.132) 
SGED-GARCH 0.022 (0.035) 50.690 (0.000) 0.023 (0.027) 5.633 (0.776) 0.027 (0.005) 17.152 (0.046) 0.026 (0.006) 39.174 (0.000) 
JSU-GARCH 0.026 (0.006) 10.010 (0.349) 0.030 (0.001) 6.336 (0.706) 0.031 (0.001) 13.381 (0.146) 0.041 (0.000) 14.011 (0.122) 
SGT-GARCH 0.029 (0.001) 23.392 (0.005) 0.028 (0.003) 6.001 (0.740) 0.034 (0.000) 17.480 (0.042) 0.028 (0.003) 39.408 (0.000) 
GHST-GARCH 0.021 (0.056) 8.799 (0.456) 0.028 (0.003) 7.665 (0.568) 0.019 (0.099) 22.349 (0.008) 0.037 (0.000) 10.983 (0.277) 
N-GJRGARCH 0.034 (0.000) 228.860 (0.000) 0.047 (0.000) 39.537 (0.000) 0.039 (0.000) 117.613 (0.000) 0.048 (0.000) 971626 (0.000) 
ST-GJRGARCH 0.024 (0.020) 49.752 (0.000) 0.031 (0.001) 40.861 (0.000) 0.029 (0.002) 57.236 (0.000) 0.038 (0.000) 73.794 (0.000) 
SKST-GJRGARCH 0.018 (0.129) 14.610 (0.102) 0.022 (0.041) 12.553 (0.184) 0.016 (0.222) 8.206 (0.514) 0.036 (0.000) 43.630 (0.000) 
SGED-GJRGARCH 0.015 (0.338) 21.714 (0.010) 0.017 (0.166) 17.948 (0.036) 0.016 (0.262) 9.942 (0.355) 0.030 (0.001) 127.937 (0.000) 
JSU-GJRGARCH 0.017 (0.155) 14.262 (0.113) 0.020 (0.072) 12.947 (0.165) 0.016 (0.248) 5.923 (0.748) 0.039 (0.000) 38.568 (0.000) 
SGT-GJRGARCH 0.021 (0.046) 20.689 (0.014) 0.025 (0.012) 20.488 (0.015) 0.026 (0.008) 11.848 (0.222) 0.029 (0.002) 133.807 (0.003) 
GHST-GJRGARCH 0.027 (0.004) 18.724 (0.028) 0.033 (0.000) 12.947 (0.165) 0.028 (0.003) 28.488 (0.001) 0.035 (0.000) 24.784 (0.000) 
N-APARCH 0.036 (0.000) 248.980 (0.000) 0.047 (0.000) 141.086 (0.000) 0.042 (0.000) 111.868 (0.000) 0.048 (0.000) 243023 (0.000) 
ST-APARCH 0.026 (0.006) 48.544 (0.000) 0.030 (0.001) 29.656 (0.001) 0.031 (0.001) 44.470 (0.000) 0.038 (0.000) 47.912 (0.000) 
SKST-APARCH 0.019 (0.093) 15.015 (0.091) 0.020 (0.062) 2.589 (0.978) 0.019 (0.110) 3.208 (0.956) 0.037 (0.000) 20.405 (0.016) 
SGED-APARCH 0.019 (0.114) 24.748 (0.003) 0.017 (0.162) 3.676 (0.931) 0.015 (0.275) 5.960 (0.744) 0.031 (0.001) 54.437 (0.000) 
JSU-APARCH 0.020 (0.081) 16.025 (0.066) 0.020 (0.064) 1.759 (0.995) 0.018 (0.120) 3.576 (0.937) 0.038 (0.000) 15.731 (0.073) 
SGT-APARCH 0.019 (0.094) 21.066 (0.012) 0.026 (0.008) 5.237 (0.813) 0.025 (0.013) 6.753 (0.663) 0.029 (0.002) 60.521 (0.000) 
GHST-APARCH 0.030 (0.001) 22.105 (0.009) 0.031 (0.001) 8.823 (0.454) 0.030 (0.001) 21.973 (0.009) 0.037 (0.000) 20.293 (0.016) 
N-FGARCH 0.037 (0.000) 132.260 (0.000) 0.047 (0.000) 97.099 (0.000) 0.042 (0.000) 106.330 (0.000) 0.051 (0.000) 971730 (0.000) 
ST-FGARCH 0.027 (0.004) 14.633 (0.102) 0.025 (0.011) 32.188 (0.000) 0.033 (0.000) 44.745 (0.000) 0.037 (0.000) 60.110 (0.000) 
SKST-FGARCH 0.019 (0.102) 4.929 (0.840) 0.022 (0.035) 15.5601(0.077) 0.019 (0.088) 2.967 (0.966) 0.034 (0.000) 27.787 (0.001) 
SGED-FGARCH 0.018 (0.142) 10.078 (0.344) 0.023 (0.029) 14.149 (0.117) 0.017 (0.158) 2.206 (0.988) 0.032 (0.000) 110.135 (0.000) 
JSU-FGARCH 0.019 (0.097) 4.467(0.878) 0.026 (0.007) 12.654 (0.179) 0.020 (0.082) 2.393 (0.984) 0.035 (0.000) 22.448 (0.008) 
SGT-FGARCH 0.018 (0.123) 7.566 (0.578) 0.028 (0.002) 14.121 (0.118) 0.023 (0.022) 3.179 (0.957) 0.027 (0.005) 121.760 (0.000) 
GHST-FGARCH 0.026 (0.008) 15.856 (0.070) 0.032 (0.000) 33.125 (0.000) 0.032 (0.000) 25.915 (0.002) 0.037 (0.000) 25.226 (0.003) 

 
Table 15: Goodness-of-fit tests for standardized innovations of stock market indexes. Figures in 
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can be evaluated by plotting a histogram of !!. A humped shape of the !-histogram would indicate that 
the issued forecasts are too narrow and that the tails of the true density are not accounted for. On the other 
hand, a U-shape of the histogram would suggest that the model issues forecasts that either under- or 
overestimate too frequently [Bauwens, Giot, Grammig and Veredas (2000)].  
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shape of the histograms shows that symmetrical distributions are not suitable to model the OIL and US 
BOND 10Y returns. Figures 12 c) and 12 d) show that the skewed Generalized Error distribution is not 
suitable for NIKKEI 225. It is appropriate for JPY/USD because its probability integral transform is 
Uniformly distributed. In 12 e) the Johnson SU distribution is also appropriate for AUD/USD. Figure 12 f) 
shows that the assumption of a Generalized Hyperbolic skew Student-t for the innovation is not 
appropriate for SAN. These results are consistent with the goodness-of-fit tests previously carried out. For 
the rest of assets, the results are similar, the symmetrical distributions and the Generalized Hyperbolic 
skew Student-t for the innovations are not appropriate for most of the assets whereas skewed Student-t, 
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Figures 12 a) and 12 b) show a sample of such histograms for the assets 
in our data set. The humped shape of the histograms shows that symme-
trical distributions are not suitable to model the OIL and US BOND 10Y 
returns. Figures 12 c) and 12 d) show that the skewed Generalized Error 
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because its probability integral transform is Uniformly distributed. In 
12 e) the Johnson SU distribution is also appropriate for AUD/USD. Fi-
gure 12 f) shows that the assumption of a Generalized Hyperbolic skew 
Student-t for the innovation is not appropriate for SAN. These results 
are consistent with the goodness-of-fit tests previously carried out. For 
the rest of assets, the results are similar, the symmetrical distributions 
and the Generalized Hyperbolic skew Student-t for the innovations are 
not appropriate for most of the assets whereas skewed Student-t, skewed 
Generalized Error and Johnson SU are suitable.

2.6.2.2. Fitting the sample moments of return innovations

For a given asset, the innovations change with the estimated model, so we 
compare the theoretical moments of a given probability distribution with 
the sample moments for the standardized innovations for that model. In 
fact, however, sample moments for innovations are similar across models, 
showing a near zero mean and a unit variance in all models, as expected. 
But that is also the case under all the estimated probability distributions, 
so it makes sense to focus on the ability of each estimated distribution to 
fit the sample skewness and kurtosis of standardized innovations. Table 
16 compares the theoretical value of skewness and kurtosis from the esti-
mated probability distribution with the similar sample moments of the 
standardized innovations calculating the absolute differences between 
these both values for stock market indices. Obviously, the Normal and 
the symmetric Student distribution do not produce any skewness. This is



Sample Size, Skewness and Leverage Effects in Value at Risk and Expected Shortfall Estimation

79

Figure 12: ζ-histograms (100 cells) for 4173 one-step-ahead forecasts. We 
assume different distributions with AR(1)-FGARCH(1,1) model for different 
assets

a limitation of these distributions since skewness and kurtosis are pre-
sent in standardized innovations. For most assets, the skewed t-Student 
distribution produces negative skewness, although not as much as it is 
observed in the data. The unbounded Johnson distribution achieves a 
higher level of negative skewness, often being close to that observed in 
the data. The GHST distribution does not fit innovation moments very 
well, especially overestimating the degree of negative skewness. Indeed, 
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the GHST distribution usually produces the maximum absolute diffe-
rence between the theoretical and the sample skewness in most stock 
market indexes, individual stocks and exchange rates. The GHST distri-
bution has been proposed as being suitable for assets with high skew-
ness and heavy-tailed (Aas & Haff, 2006) and the assets we consider do 
not have high skewness. In fact, only the standardized innovations in 
SILVER and AUD/USD have a negative high skewness and in these two 
cases models with GHST produce the best fit to sample skewness. Addi-
tionally, asymmetric probability distributions are unable to reproduce 
the positive skewness shown by a few return innovations, such as those 
in IRS5Y and GAS.

On the other hand, the GHST distribution can explain the high kurto-
sis often observed in our standardized innovations, except when used 
with a GJRGARCH volatility for stock market indexes or when used with 
APARCH and FGARCH specifications for IRS5Y. The symmetric and the 
skewed Student-t distributions explain the level of kurtosis observed in 
the data15, while the Johnson distribution generally implies higher kur-
tosis than it is observed in the data16.

In fact, for skewness the results are concentrated in the SKST distribu-
tion, it fits skewness best in 8 of the 19 cases. For kurtosis results are not 
so concentrated: ST (for 5 assets), SKST (4), SGT (6) y SGED (4) fit kurto-
sis best. Pulling together the fit of both moments, the SKST distribution 
performs best in 12 out of the 38 cases, followed by SGT and SGED with 
7 cases. The FGARCH specification fits skewness best in 7 assets, while 
the GARCH specification fits kurtosis best in 8 assets. Overall, the SGT 
and SKST distributions with GARCH, GJR-GARCH and FGARCH do bet-
ter in capturing skewness and kurtosis of the standardized innovations 
than other combinations.

15.  The theoretical kurtosis for the Student-t distribution has been calculated as 
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are unable to reproduce the positive skewness shown by a few return innovations, such as those in IRS5Y 
and GAS. 

   
 

 IBEX35 NASDAQ100 FTSE100 NIKKEI 225 
 Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis 

N-GARCH 0.263 1.327 0.235 0.900 0.318 0.748 0.377 1.334 

ST-GARCH 0.284 0.149 0.245 0.651 0.317 0.488 0.398 0.278 

SKST-GARCH 0.079 0.045 0.048 0.555 0.065 0.313 0.197 0.127 

SGED-GARCH 0.104 0.420 0.101 0.206 0.102 0.063 0.341 0.074 

JSU-GARCH 0.070 2.529 0.145 3.869 0.062 1.020 0.076 3.273 

SGT-GARCH 0.114 0.254 0.123 0.222 0.118 0.082 0.351 0.105 

GHST-GARCH 0.345 1.303 0.416 2.406 0.210 0.333 0.249 1.558 

N-GJRGARCH 0.260 0.952 0.275 0.734 0.332 0.633 0.366 1.499 

ST-GJRGARCH 0.269 0.159 0.288 0.476 0.332 0.196 0.384 0.267 

SKST-GJRGARCH 0.032 0.119 0.030 0.421 0.047 0.115 0.198 0.339 

SGED-GJRGARCH 0.055 0.187 0.070 0.188 0.066 0.011 0.316 0.268 

JSU-GJRGARCH 0.025 0.952 0.069 2.094 0.171 0.165 0.032 1.718 

SGT-GJRGARCH 0.063 0.084 0.096 0.203 0.081 0.010 0.336 0.264 

GHST-GJRGARCH 0.501 4.861 0.843 18.402 0.304 2.140 0.731 16.204 

N-APARCH 0.251 0.916 0.307 0.773 0.338 0.685 0.365 1.577 

ST-APARCH 0.258 0.159 0.332 0.420 0.346 0.085 0.395 0.451 

SKST-APARCH 0.019 0.130 0.061 0.323 0.052 0.033 0.206 0.511 

SGED-APARCH 0.043 0.172 0.094 0.108 0.067 0.088 0.313 0.461 

JSU-APARCH 0.027 0.852 0.023 1.778 0.176 0.097 0.001 2.072 

SGT-APARCH 0.049 0.058 0.118 0.127 0.083 0.089 0.343 0.458 

GHST-APARCH 0.391 2.119 0.334 2.779 0.199 0.498 0.277 1.444 

N-FGARCH 0.232 0.763 0.299 0.677 0.338 0.649 0.385 1.632 

ST-FGARCH 0.250 0.197 0.297 0.204 0.349 0.038 0.415 0.513 

SKST-FGARCH 0.003 0.184 0.053 0.352 0.055 0.002 0.216 0.596 

SGED-FGARCH 0.027 0.082 0.122 0.131 0.065 0.099 0.318 0.588 

JSU-FGARCH 0.035 0.745 0.185 0.140 0.201 0.021 0.051 1.326 

SGT-FGARCH 0.035 0.011 0.106 0.168 0.080 0.096 0.353 0.582 

GHST-FGARCH 0.291 2.414 0.313 2.303 0.080 1.123 0.218 0.818 

 
Table 16: Absolute differences between standardized innovation moments and theoretical moments for 

stock market indexes. Bold figures show the lowest value for each asset. 
 
On the other hand, the GHST distribution can explain the high kurtosis often observed in our standardized 
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kurtosis best. Pulling together the fit of both moments, the SKST distribution performs best in 12 out of 
the 38 cases, followed by SGT and SGED with 7 cases. The FGARCH specification fits skewness best in 
7 assets, while the GARCH specification fits kurtosis best in 8 assets. Overall, the SGT and SKST 

                                                        
15 The theoretical kurtosis for the Student-t distribution has been calculated as ! = !

!!!
+ 3. For GOLD and SILVER, the 

Student-t distribution for some volatility models produces negative kurtosis because we have obtained in the estimation a 
number of degrees of freedom (!) less than 4. 
 
16 For GOLD and SILVER, as well as for IBM and BP, the unbounded Johnson distribution produces extremely high kurtosis 
because the estimated kurtosis parameter (!) of the Johnson distribution is close to 1. As !   →   ∞ the distribution approaches 
the Normal density function and we obtain a kurtosis = 3. 

. For GOLD 
and SILVER, the Student-t distribution for some volatility models produces negative kurtosis because we 
have obtained in the estimation a number of degrees of freedom (ν) less than 4.
16.  For GOLD and SILVER, as well as for IBM and BP, the unbounded Johnson distribution produces 
extremely high kurtosis because the estimated kurtosis parameter (δ) of the Johnson distribution is close to 
1. As δ > ∞ the distribution approaches the Normal density function and we obtain a kurtosis = 3.
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Table 16: Absolute differences between standardized innovation moments and 
theoretical moments for stock market indexes. Bold figures show the lowest value 
for each asset

IBEX35 NASDAQ100 FTSE100 NIKKEI 225

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

N-GARCH 0.263 1.327 0.235 0.900 0.318 0.748 0.377 1.334

ST-GARCH 0.284 0.149 0.245 0.651 0.317 0.488 0.398 0.278

SKST-GARCH 0.079 0.045 0.048 0.555 0.065 0.313 0.197 0.127

SGED-GARCH 0.104 0.420 0.101 0.206 0.102 0.063 0.341 0.074

JSU-GARCH 0.070 2.529 0.145 3.869 0.062 1.020 0.076 3.273

SGT-GARCH 0.114 0.254 0.123 0.222 0.118 0.082 0.351 0.105

GHST-GARCH 0.345 1.303 0.416 2.406 0.210 0.333 0.249 1.558

N-GJRGARCH 0.260 0.952 0.275 0.734 0.332 0.633 0.366 1.499

ST-GJRGARCH 0.269 0.159 0.288 0.476 0.332 0.196 0.384 0.267

SKST-GJRGARCH 0.032 0.119 0.030 0.421 0.047 0.115 0.198 0.339

SGED-GJRGARCH 0.055 0.187 0.070 0.188 0.066 0.011 0.316 0.268

JSU-GJRGARCH 0.025 0.952 0.069 2.094 0.171 0.165 0.032 1.718

SGT-GJRGARCH 0.063 0.084 0.096 0.203 0.081 0.010 0.336 0.264

GHST-GJRGARCH 0.501 4.861 0.843 18.402 0.304 2.140 0.731 16.204

N-APARCH 0.251 0.916 0.307 0.773 0.338 0.685 0.365 1.577

ST-APARCH 0.258 0.159 0.332 0.420 0.346 0.085 0.395 0.451

SKST-APARCH 0.019 0.130 0.061 0.323 0.052 0.033 0.206 0.511

SGED-APARCH 0.043 0.172 0.094 0.108 0.067 0.088 0.313 0.461

JSU-APARCH 0.027 0.852 0.023 1.778 0.176 0.097 0.001 2.072

SGT-APARCH 0.049 0.058 0.118 0.127 0.083 0.089 0.343 0.458

GHST-APARCH 0.391 2.119 0.334 2.779 0.199 0.498 0.277 1.444

N-FGARCH 0.232 0.763 0.299 0.677 0.338 0.649 0.385 1.632

ST-FGARCH 0.250 0.197 0.297 0.204 0.349 0.038 0.415 0.513

SKST-FGARCH 0.003 0.184 0.053 0.352 0.055 0.002 0.216 0.596

SGED-FGARCH 0.027 0.082 0.122 0.131 0.065 0.099 0.318 0.588

JSU-FGARCH 0.035 0.745 0.185 0.140 0.201 0.021 0.051 1.326

SGT-FGARCH 0.035 0.011 0.106 0.168 0.080 0.096 0.353 0.582

GHST-FGARCH 0.291 2.414 0.313 2.303 0.080 1.123 0.218 0.818
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2.6.3.	 Fitting observed returns

2.6.3.1. Fitting the empirical distribution of asset returns

How about the ability of each estimated model to fit sample return mo-
ments? Unfortunately, except in cases when returns do not show any 
stochastic structure, it is not easy to derive the moments of asset re-
turns from the estimated probability distribution for return innovations. 
Hence, we characterize the implied probability distribution for returns 
by simulation. Taking random draws for the estimated probability dis-
tribution for innovations, we generate 1000 time series for returns with 
the same length as our data set. For each simulation we apply the two-
sample KS test (Kolmogorov, 1933, Smirnov, 1939 and Massey, 1951) 
and the Chi2 test (Pearson, 1900) to compute the failure rates of the 
respective null hypotheses.

The KS test quantifies the distance between the empirical distribution 
function of observed returns and the one obtained from each simulated 
time series. The KS test statistic is:
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c(α) 1.22 1.36 1.48 1.63 1.73 1.95

Table 17 reports the failure rates of the KS and Chi2 null hypothesis 
at confidence level 99%. The models with lower failure rate in either 
the KS and the Chi2 tests are the SGED distribution with GJRGARCH, 
APARCH or FGARCH volatility specifications, and the SKST and JSU 
distributions with APARCH and FGARCH specifications, respectively. 
Hence, we observe again the preference for asymmetric distributions 
and volatility models with leverage.
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Table 17: Goodness-of-fit tests for observed returns of stock market indexes. 
Figures denote the fail rates for each model

confidence level = 0.99 IBEX35 NASDAQ100 FTSE100 NIKKEI225

fail rate KS Chi2 KS Chi2 KS Chi2 KS Chi2

N-GARCH 0.821 0.985 0.993 1.000 0.367 0.846 1.000 0.999

ST-GARCH 0.069 0.978 0.391 0.999 0.100 0.676 0.798 0.997

SKST-GARCH 0.202 0.714 0.575 0.994 0.551 0.423 0.836 0.773

SGED-GARCH 0.110 0.594 0.155 0.991 0.519 0.461 0.460 0.979

JSU-GARCH 0.208 0.713 0.549 0.993 0.555 0.436 0.855 0.542

SGT-GARCH 0.324 0.669 0.332 0.992 0.800 0.428 0.465 0.994

GHST-GARCH 0.067 0.889 0.416 0.998 0.067 0.447 0.845 0.811

N-GJRGARCH 0.593 0.997 0.993 1.000 0.721 0.970 0.997 0.999

ST-GJRGARCH 0.149 0.995 0.420 1.000 0.221 0.887 0.806 0.997

SKST-GJRGARCH 0.029 0.775 0.185 0.995 0.054 0.433 0.789 0.818

SGED-GJRGARCH 0.009 0.668 0.051 0.993 0.056 0.450 0.521 0.993

JSU-GJRGARCH 0.025 0.803 0.164 0.996 0.050 0.459 0.841 0.637

SGT-GJRGARCH 0.074 0.648 0.150 0.990 0.270 0.421 0.461 0.991

GHST-GJRGARCH 0.223 0.974 0.617 0.996 0.218 0.705 0.923 0.804

N-APARCH 0.672 0.999 0.992 1.000 0.819 0.993 0.999 0.998

ST-APARCH 0.250 0.994 0.407 1.000 0.313 0.943 0.791 1.000

SKST-APARCH 0.032 0.812 0.177 0.993 0.040 0.527 0.747 0.826

SGED-APARCH 0.024 0.706 0.058 0.989 0.034 0.583 0.565 0.989

JSU-APARCH 0.037 0.818 0.154 0.996 0.037 0.551 0.762 0.708

SGT-APARCH 0.045 0.657 0.170 0.983 0.219 0.515 0.473 0.996

GHST-APARCH 0.318 0.984 0.463 0.999 0.302 0.789 0.808 0.938

N-FGARCH 0.735 0.998 0.984 1.000 0.858 0.983 1.000 1.000

ST-FGARCH 0.305 0.999 0.285 1.000 0.423 0.939 0.768 0.999

SKST-FGARCH 0.033 0.831 0.158 0.998 0.046 0.453 0.714 0.825

SGED-FGARCH 0.030 0.746 0.142 0.999 0.025 0.452 0.607 0.991

JSU-FGARCH 0.033 0.864 0.338 1.000 0.047 0.500 0.700 0.700

SGT-FGARCH 0.040 0.670 0.336 0.998 0.173 0.405 0.441 0.989

GHST-FGARCH 0.257 0.998 0.455 1.000 0.344 0.861 0.802 0.959
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2.6.3.2.  Fitting the sample moments of asset returns

In addition to the fit to the whole distribution, we now examine the 
ability of each combination of volatility specification and probability 
distribution to fit the main moments of observed returns: sample mean, 
standard deviation, skewness, kurtosis, maximum, minimum and the 
observed range. To that end, we assign to each model the average va-
lue for each of these moments over the set of 1000 simulations, to be 
compared with their sample return analogues. Table 18 presents sample 
return moments for stock market indices together with a summary of the 
average simulated return moments over probability distributions and 
volatility specifications17. Column 1 in Table 18 displays sample mo-
ments, while column 2 shows the median value of the average simulated 
moments across all models (28 in total). The remaining columns show 
median values of moments across subsets of models18. The first panel, 
from third to ninth column, considers median values of moments across 
alternative volatility specifications, for a given probability distribution 
for return innovations. The second panel, from tenth to thirteenth co-
lumn, presents median values of simulated moments across probability 
distributions, for a given volatility specification. We also compute the 
mean absolute difference between the average moments obtained by si-
mulation and the analogue sample moments (mean, standard deviation, 
skewness, kurtosis, maximum, minimum and the observed range). The 
last row displays the median value of these absolute differences. Finally, 
we take the range19 of MAE values across the set of volatility specifica-
tions or across the set of probability distributions, as shown in the last 
two columns.

The first panel shows that for most assets all probability distributions 
explain the standard deviations of return data similarly, with the Normal 
and Student-t distributions doing somewhat better than the rest. The 
Johnson SU distribution approximates very well the level of skewness in 
returns and skewed Generalized Error distribution does better than other 
distributions to approximate the level of kurtosis. We conclude that 
the Normal distribution performs well on this account for stock market 

17.  Results for other assets are available on request.
18.  Remember that for each model we take the average value of each moment over 1000 simulations.
19.  The difference between the highest and the lowest MAE values.
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indexes because it fits very well the second moment but not because it 
fits well the higher order moments, i.e. the third and fourth moment. In 
the second panel, the differences between volatility specifications are 
small compared with differences between probability distributions but 
APARCH and FGARCH models fit standard deviation better than another 
volatility models, GJRGARCH and FGARCH volatilities seem to fit skew-
ness best, while APARCH and FGARCH fit kurtosis best.

Summarizing, all the probability distributions other than the Normal 
produce levels of kurtosis as high as those in the return data, but they 
fall short of explaining the negative skewness observed in some market 
returns. They also fall a bit short of reproducing the maximum returns. 
However, they tend to produce a minimum that is higher in absolute 
value than the one for observed returns. Consequently, the range of values 
implied by the estimated models is just a bit narrower than that observed 
in return data for all assets.

According to the median MAE, the Normal distribution is the preferred 
one for 2 assets, the symmetric Student-t is the best for 4 assets, the 
skewed Student-t for 3, the skewed Generalized Error for 2, the Johnson 
SU for 4, the skewed Generalized-t for 1 and Generalized Hyperbolic skew 
Student-t for 3 assets. In terms of volatility models, the standard GARCH 
is the preferred volatility specifications for 4 assets, the GJR-GARCH model 
for 1, the APARCH model for 6 and the FGARCH model is the best for 8 
assets. So, from this point of view, it looks as if the FGARCH and APARCH 
volatility specifications and the symmetric Student-t and the Johnson SU 
probability distribution should be preferred.

If we exclude from consideration the ability to reproduce the maximum 
and minimum observed returns the Normal distribution is the preferred 
one for 2 assets, the symmetric Student-t is the best for 2 assets, the 
skewed Student-t for 2, the skewed Generalized Error for 5, the Johnson 
SU for 3, the skewed Generalized-t for 2 and Generalized Hyperbolic skew 
Student-t for 3 assets. In terms of volatility models, the standard GARCH 
is the preferred volatility specifications for 5 assets, the GJR-GARCH model 
for 1, the APARCH model for 7 and the FGARCH model is the best for 6 
assets. Again, the APARCH and FGARCH volatility models perform better 
than GARCH and GJR-GARCH, but now the skewed Generalized Error 
distribution is the preferred one.
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Interestingly enough, the last two columns show that median values of 
the simulated statistics for different volatility specifications are more 
similar among them than median values for the alternative probability 
distributions. This suggests again that the assumption we can make on 
the probability distribution of return innovations may be more impor-
tant to fit return data than the assumption on the volatility specification.

2.7.	VaR Performance

We now analyze the VaR performance of our estimated models restricting 
our attention to the left tail of the distribution and the 1% significance 
level. The choice of the 1% level is a compromise between trying to cap-
ture extreme events and trying to avoid a too low number of exceptions. 
Results for alternative significance levels are available from the authors 
upon request. Considering the left tail is not a trivial choice, since results 
for both tails may differ significantly for asymmetric return distributions. 
In all cases we present out-of-sample VaR forecasts over the last five 
years in the sample: 2011-2015 (1260 data observations). Every day 
we compute 1-day ahead 1% VaR, reestimating each model every 50 
days. The latter choice tries to reduce the computational cost as well 
as avoiding frequent parameter variation that might be due in part to 
just noise.

We estimate the one-step ahead VaR parametrically as 
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  Median over Median over probability distributions Median over volatility models Ranges over distributions (left) 

 Sample all models N ST SKST SGED SU SGT GHST   GARCH GJRGARCH A   APARCH FGARCH and over volatility models (right) 

IBEX35                

Mean -0.005 0.018 0.007 0.028 0.011 0.006 0.012 0.029 0.009 0.046 0.015 0.007 0.004 0.023 0.042 

Standard deviation 1.495 1.743 1.592 1.474 1.874 1.685 1.743 2.004 2.400 2.049 1.750 1.516 1.674 0.926 0.532 

Skewness 0.083 -0.193 0.042 0.064 -0.272 -0.224 -0.318 -0.078 -0.740 -0.244 -0.182 -0.235 -0.079 0.804 0.165 

Kurtosis 7.932 12.364 6.875 12.419 14.043 12.206 13.732 10.226 16.545 12.860 13.755 9.423 13.217 9.670 4.333 

Maximum 13.484 13.675 10.356 12.234 15.004 13.348 14.102 14.953 16.584 15.095 13.989 10.735 14.316 6.228 4.360 

Minimum -9.586 -13.746 -9.976 -11.114 -15.613 -13.746 -15.138 -14.938 -21.414 -16.437 -13.701 -11.861 -13.792 11.438 4.576 

Range 23.070 27.584 20.332 23.348 30.866 27.208 29.557 29.891 37.448 31.533 27.690 22.596 27.791 17.115 8.936 
  Median MAE 0.853 1.237 2.483 1.580 2.174 1.630 4.130 2.459 1.820 0.953 2.001 3.277 1.505 

NASDAQ100                

Mean 0.005 0.052 0.027 0.060 0.032 0.042 0.049 0.059 0.037 0.070 0.033 0.031 0.055 0.034 0.039 

Standard deviation 1.848 1.759 1.591 1.420 1.828 1.714 1.789 1.955 2.676 1.876 1.939 1.744 1.245 1.257 0.694 

Skewness 0.192 -0.097 0.062 0.066 -0.227 -0.177 -0.297 -0.043 -0.788 -0.199 -0.140 -0.219 0.044 0.854 0.263 

Kurtosis 9.623 11.838 6.833 11.691 15.384 11.343 12.643 9.933 33.514 11.669 15.312 12.087 7.035 26.681 8.277 

Maximum 17.203 13.741 9.866 11.939 15.234 12.849 13.616 15.024 19.485 13.598 15.853 13.885 10.031 9.618 5.822 

Minimum -11.115 -14.403 -9.292 -10.803 -15.034 -13.247 -15.093 -14.524 -24.307 -14.978 -15.248 -14.469 -7.301 15.015 7.946 

Range 28.318 28.319 19.158 22.742 30.079 26.096 28.709 29.548 42.950 28.326 31.101 29.092 19.883 23.792 11.218 
  Median MAE 2.134 1.507 2.296 1.739 2.431 1.508 7.888 1.783 2.534 1.845 2.896 6.380 1.113 

FTSE100                

Mean -0.003 -0.003 -0.006 0.010 -0.005 -0.009 -0.005 0.010 -0.008 0.028 -0.003 -0.008 -0.011 0.019 0.039 

Standard deviation 1.210 1.346 1.221 1.237 1.321 1.244 1.279 1.665 1.762 1.287 1.326 1.231 1.551 0.541 0.320 

Skewness -0.161 -0.277 0.065 0.067 -0.325 -0.277 -0.404 -0.094 -0.596 -0.290 -0.261 -0.305 -0.265 0.663 0.044 

Kurtosis 9.356 11.624 7.223 11.786 13.472 12.302 13.579 10.420 21.043 11.269 14.362 9.968 17.074 13.820 7.106 

Maximum 9.384 10.687 8.027 9.726 10.406 9.813 10.133 12.133 14.531 9.083 10.786 8.984 13.586 6.504 4.602 

Minimum -9.266 -10.675 -7.673 -9.437 -10.967 -10.049 -11.161 -12.544 -16.806 -10.260 -10.751 -10.189 -14.170 9.132 3.981 

Range 18.650 21.293 15.700 19.164 21.337 19.863 21.294 24.677 31.337 19.343 21.537 19.229 27.293 15.637 8.064 

  Median MAE 0.888 0.926 1.213 0.856 1.294 1.349 4.219 0.868 1.384 0.539 2.941 3.363 2.402 

NIKKEI225                

Mean 0.000 0.012 0.012 0.012 0.012 -0.001 0.012 0.012 -0.011 0.012 0.012 0.012 0.002 0.023 0.010 

Standard deviation 1.499 1.561 1.533 1.502 1.506 1.529 1.500 2.182 1.693 1.545 1.482 1.484 1.678 0.681 0.195 

Skewness -0.410 -0.064 0.014 0.024 -0.218 -0.064 -0.336 0.000 -0.751 -0.066 -0.037 -0.061 -0.092 0.775 0.055 

Kurtosis 9.725 8.711 4.825 8.581 8.987 9.273 8.898 8.565 13.131 8.672 9.301 7.444 11.667 8.306 4.223 

Maximum 13.235 10.939 8.372 10.785 10.597 11.194 10.177 15.646 11.342 10.992 10.886 10.076 12.773 7.275 2.697 

Minimum -12.120 -11.439 -8.158 -10.532 -11.305 -11.072 -11.567 -15.496 -15.983 -11.422 -11.189 -10.693 -14.054 7.825 3.361 

Range 25.354 22.376 16.530 21.318 21.902 22.266 21.744 31.142 27.325 22.309 22.074 20.357 27.491 14.612 7.134 
  Median MAE 2.367 0.947 0.798 0.991 0.821 1.341 1.618 0.983 1.076 1.323 1.259 1.570 0.340 

 
Table 18: Empirical moments vs sample moments for stock market indexes. 
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We estimate the one-step ahead VaR parametrically as !"#!,! = !! ! + !! ! !!! ! ! , where !! !  
represents the conditional mean, !! !  is the conditional standard deviation and !!! ! !  denotes the 
corresponding quantile of the distribution of the standardized innovations !! at a given !% significance. 
After that, we examine the performance of VaR models through standard tests: the unconditional 
coverage test of Kupiec (1995), the independence and conditional coverage tests of Christoffersen 
(1998), the Dynamic Quantile test of Engle and Manganelli (2004), as well as by evaluating the 
Asymmetric Linear Tick loss function (AlTick) proposed by Giacomini and Komunjer (2005). For 
a comprehensive review on VaR forecasting and backtesting, see Nieto and Ruiz (2015).  
 

The unconditional coverage test introduced by Kupiec (1995) is based on the number of violations, i.e. 
the number of times (!!) that returns exceed the predicted VaR over a period ! for a given significance 
level. If the VaR model is correctly specified, the failure rate ! = !!

!
 should be equal to the pre-

specified VaR level (α).  The null hypothesis !0:  ! = ! is evaluated through a likelihood ratio test: 
 

!"!" = −2!"
! Π!
! Π = −2!"

1 − ! !!!!!
1 − ! !!!!!

!→!
χ!! 

 
where !! = ! − !!. 
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observations). Every day we compute 1-day ahead 1% VaR, reestimating each model every 50 days. The 
latter choice tries to reduce the computational cost as well as avoiding frequent parameter variation that 
might be due in part to just noise. 
 
We estimate the one-step ahead VaR parametrically as !"#!,! = !! ! + !! ! !!! ! ! , where !! !  
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corresponding quantile of the distribution of the standardized innovations !! at a given !% significance. 
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a comprehensive review on VaR forecasting and backtesting, see Nieto and Ruiz (2015).  
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  Median over Median over probability distributions Median over volatility models Ranges over distributions (left) 

 Sample all models N ST SKST SGED SU SGT GHST   GARCH GJRGARCH A   APARCH FGARCH and over volatility models (right) 

IBEX35                

Mean -0.005 0.018 0.007 0.028 0.011 0.006 0.012 0.029 0.009 0.046 0.015 0.007 0.004 0.023 0.042 

Standard deviation 1.495 1.743 1.592 1.474 1.874 1.685 1.743 2.004 2.400 2.049 1.750 1.516 1.674 0.926 0.532 

Skewness 0.083 -0.193 0.042 0.064 -0.272 -0.224 -0.318 -0.078 -0.740 -0.244 -0.182 -0.235 -0.079 0.804 0.165 

Kurtosis 7.932 12.364 6.875 12.419 14.043 12.206 13.732 10.226 16.545 12.860 13.755 9.423 13.217 9.670 4.333 

Maximum 13.484 13.675 10.356 12.234 15.004 13.348 14.102 14.953 16.584 15.095 13.989 10.735 14.316 6.228 4.360 

Minimum -9.586 -13.746 -9.976 -11.114 -15.613 -13.746 -15.138 -14.938 -21.414 -16.437 -13.701 -11.861 -13.792 11.438 4.576 

Range 23.070 27.584 20.332 23.348 30.866 27.208 29.557 29.891 37.448 31.533 27.690 22.596 27.791 17.115 8.936 
  Median MAE 0.853 1.237 2.483 1.580 2.174 1.630 4.130 2.459 1.820 0.953 2.001 3.277 1.505 

NASDAQ100                

Mean 0.005 0.052 0.027 0.060 0.032 0.042 0.049 0.059 0.037 0.070 0.033 0.031 0.055 0.034 0.039 

Standard deviation 1.848 1.759 1.591 1.420 1.828 1.714 1.789 1.955 2.676 1.876 1.939 1.744 1.245 1.257 0.694 

Skewness 0.192 -0.097 0.062 0.066 -0.227 -0.177 -0.297 -0.043 -0.788 -0.199 -0.140 -0.219 0.044 0.854 0.263 

Kurtosis 9.623 11.838 6.833 11.691 15.384 11.343 12.643 9.933 33.514 11.669 15.312 12.087 7.035 26.681 8.277 

Maximum 17.203 13.741 9.866 11.939 15.234 12.849 13.616 15.024 19.485 13.598 15.853 13.885 10.031 9.618 5.822 

Minimum -11.115 -14.403 -9.292 -10.803 -15.034 -13.247 -15.093 -14.524 -24.307 -14.978 -15.248 -14.469 -7.301 15.015 7.946 

Range 28.318 28.319 19.158 22.742 30.079 26.096 28.709 29.548 42.950 28.326 31.101 29.092 19.883 23.792 11.218 
  Median MAE 2.134 1.507 2.296 1.739 2.431 1.508 7.888 1.783 2.534 1.845 2.896 6.380 1.113 

FTSE100                

Mean -0.003 -0.003 -0.006 0.010 -0.005 -0.009 -0.005 0.010 -0.008 0.028 -0.003 -0.008 -0.011 0.019 0.039 

Standard deviation 1.210 1.346 1.221 1.237 1.321 1.244 1.279 1.665 1.762 1.287 1.326 1.231 1.551 0.541 0.320 

Skewness -0.161 -0.277 0.065 0.067 -0.325 -0.277 -0.404 -0.094 -0.596 -0.290 -0.261 -0.305 -0.265 0.663 0.044 

Kurtosis 9.356 11.624 7.223 11.786 13.472 12.302 13.579 10.420 21.043 11.269 14.362 9.968 17.074 13.820 7.106 

Maximum 9.384 10.687 8.027 9.726 10.406 9.813 10.133 12.133 14.531 9.083 10.786 8.984 13.586 6.504 4.602 

Minimum -9.266 -10.675 -7.673 -9.437 -10.967 -10.049 -11.161 -12.544 -16.806 -10.260 -10.751 -10.189 -14.170 9.132 3.981 

Range 18.650 21.293 15.700 19.164 21.337 19.863 21.294 24.677 31.337 19.343 21.537 19.229 27.293 15.637 8.064 

  Median MAE 0.888 0.926 1.213 0.856 1.294 1.349 4.219 0.868 1.384 0.539 2.941 3.363 2.402 

NIKKEI225                

Mean 0.000 0.012 0.012 0.012 0.012 -0.001 0.012 0.012 -0.011 0.012 0.012 0.012 0.002 0.023 0.010 

Standard deviation 1.499 1.561 1.533 1.502 1.506 1.529 1.500 2.182 1.693 1.545 1.482 1.484 1.678 0.681 0.195 

Skewness -0.410 -0.064 0.014 0.024 -0.218 -0.064 -0.336 0.000 -0.751 -0.066 -0.037 -0.061 -0.092 0.775 0.055 

Kurtosis 9.725 8.711 4.825 8.581 8.987 9.273 8.898 8.565 13.131 8.672 9.301 7.444 11.667 8.306 4.223 

Maximum 13.235 10.939 8.372 10.785 10.597 11.194 10.177 15.646 11.342 10.992 10.886 10.076 12.773 7.275 2.697 

Minimum -12.120 -11.439 -8.158 -10.532 -11.305 -11.072 -11.567 -15.496 -15.983 -11.422 -11.189 -10.693 -14.054 7.825 3.361 

Range 25.354 22.376 16.530 21.318 21.902 22.266 21.744 31.142 27.325 22.309 22.074 20.357 27.491 14.612 7.134 
  Median MAE 2.367 0.947 0.798 0.991 0.821 1.341 1.618 0.983 1.076 1.323 1.259 1.570 0.340 

 
Table 18: Empirical moments vs sample moments for stock market indexes. 

 
 

2.7. VaR Performance 
 
We now analyze the VaR performance of our estimated models restricting our attention to the left tail of 
the distribution and the 1% significance level. The choice of the 1% level is a compromise between trying 
to capture extreme events and trying to avoid a too low number of exceptions.  Results for alternative 
significance levels are available from the authors upon request. Considering the left tail is not a trivial 
choice, since results for both tails may differ significantly for asymmetric return distributions. In all cases 
we present out-of-sample VaR forecasts over the last five years in the sample: 2011-2015 (1260 data 
observations). Every day we compute 1-day ahead 1% VaR, reestimating each model every 50 days. The 
latter choice tries to reduce the computational cost as well as avoiding frequent parameter variation that 
might be due in part to just noise. 
 
We estimate the one-step ahead VaR parametrically as !"#!,! = !! ! + !! ! !!! ! ! , where !! !  
represents the conditional mean, !! !  is the conditional standard deviation and !!! ! !  denotes the 
corresponding quantile of the distribution of the standardized innovations !! at a given !% significance. 
After that, we examine the performance of VaR models through standard tests: the unconditional 
coverage test of Kupiec (1995), the independence and conditional coverage tests of Christoffersen 
(1998), the Dynamic Quantile test of Engle and Manganelli (2004), as well as by evaluating the 
Asymmetric Linear Tick loss function (AlTick) proposed by Giacomini and Komunjer (2005). For 
a comprehensive review on VaR forecasting and backtesting, see Nieto and Ruiz (2015).  
 

The unconditional coverage test introduced by Kupiec (1995) is based on the number of violations, i.e. 
the number of times (!!) that returns exceed the predicted VaR over a period ! for a given significance 
level. If the VaR model is correctly specified, the failure rate ! = !!

!
 should be equal to the pre-

specified VaR level (α).  The null hypothesis !0:  ! = ! is evaluated through a likelihood ratio test: 
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ding quantile of the distribution of the standardized innovations zt at 
a given α% significance. After that, we examine the performance of 
VaR models through standard tests: the unconditional coverage test 
of Kupiec (1995), the independence and conditional coverage tests of 
Christoffersen (1998), the Dynamic Quantile test of Engle and Man-
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The unconditional coverage test introduced by Kupiec (1995) is based 
on the number of violations, i.e. the number of times (T1) that returns 
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exceed the predicted VaR over a period T for a given significance le-
vel. If the VaR model is correctly specified, the failure rate 
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Skewness 0.083 -0.193 0.042 0.064 -0.272 -0.224 -0.318 -0.078 -0.740 -0.244 -0.182 -0.235 -0.079 0.804 0.165 

Kurtosis 7.932 12.364 6.875 12.419 14.043 12.206 13.732 10.226 16.545 12.860 13.755 9.423 13.217 9.670 4.333 

Maximum 13.484 13.675 10.356 12.234 15.004 13.348 14.102 14.953 16.584 15.095 13.989 10.735 14.316 6.228 4.360 

Minimum -9.586 -13.746 -9.976 -11.114 -15.613 -13.746 -15.138 -14.938 -21.414 -16.437 -13.701 -11.861 -13.792 11.438 4.576 

Range 23.070 27.584 20.332 23.348 30.866 27.208 29.557 29.891 37.448 31.533 27.690 22.596 27.791 17.115 8.936 
  Median MAE 0.853 1.237 2.483 1.580 2.174 1.630 4.130 2.459 1.820 0.953 2.001 3.277 1.505 

NASDAQ100                

Mean 0.005 0.052 0.027 0.060 0.032 0.042 0.049 0.059 0.037 0.070 0.033 0.031 0.055 0.034 0.039 

Standard deviation 1.848 1.759 1.591 1.420 1.828 1.714 1.789 1.955 2.676 1.876 1.939 1.744 1.245 1.257 0.694 

Skewness 0.192 -0.097 0.062 0.066 -0.227 -0.177 -0.297 -0.043 -0.788 -0.199 -0.140 -0.219 0.044 0.854 0.263 

Kurtosis 9.623 11.838 6.833 11.691 15.384 11.343 12.643 9.933 33.514 11.669 15.312 12.087 7.035 26.681 8.277 

Maximum 17.203 13.741 9.866 11.939 15.234 12.849 13.616 15.024 19.485 13.598 15.853 13.885 10.031 9.618 5.822 

Minimum -11.115 -14.403 -9.292 -10.803 -15.034 -13.247 -15.093 -14.524 -24.307 -14.978 -15.248 -14.469 -7.301 15.015 7.946 

Range 28.318 28.319 19.158 22.742 30.079 26.096 28.709 29.548 42.950 28.326 31.101 29.092 19.883 23.792 11.218 
  Median MAE 2.134 1.507 2.296 1.739 2.431 1.508 7.888 1.783 2.534 1.845 2.896 6.380 1.113 

FTSE100                

Mean -0.003 -0.003 -0.006 0.010 -0.005 -0.009 -0.005 0.010 -0.008 0.028 -0.003 -0.008 -0.011 0.019 0.039 

Standard deviation 1.210 1.346 1.221 1.237 1.321 1.244 1.279 1.665 1.762 1.287 1.326 1.231 1.551 0.541 0.320 

Skewness -0.161 -0.277 0.065 0.067 -0.325 -0.277 -0.404 -0.094 -0.596 -0.290 -0.261 -0.305 -0.265 0.663 0.044 

Kurtosis 9.356 11.624 7.223 11.786 13.472 12.302 13.579 10.420 21.043 11.269 14.362 9.968 17.074 13.820 7.106 

Maximum 9.384 10.687 8.027 9.726 10.406 9.813 10.133 12.133 14.531 9.083 10.786 8.984 13.586 6.504 4.602 

Minimum -9.266 -10.675 -7.673 -9.437 -10.967 -10.049 -11.161 -12.544 -16.806 -10.260 -10.751 -10.189 -14.170 9.132 3.981 

Range 18.650 21.293 15.700 19.164 21.337 19.863 21.294 24.677 31.337 19.343 21.537 19.229 27.293 15.637 8.064 

  Median MAE 0.888 0.926 1.213 0.856 1.294 1.349 4.219 0.868 1.384 0.539 2.941 3.363 2.402 

NIKKEI225                

Mean 0.000 0.012 0.012 0.012 0.012 -0.001 0.012 0.012 -0.011 0.012 0.012 0.012 0.002 0.023 0.010 

Standard deviation 1.499 1.561 1.533 1.502 1.506 1.529 1.500 2.182 1.693 1.545 1.482 1.484 1.678 0.681 0.195 

Skewness -0.410 -0.064 0.014 0.024 -0.218 -0.064 -0.336 0.000 -0.751 -0.066 -0.037 -0.061 -0.092 0.775 0.055 

Kurtosis 9.725 8.711 4.825 8.581 8.987 9.273 8.898 8.565 13.131 8.672 9.301 7.444 11.667 8.306 4.223 

Maximum 13.235 10.939 8.372 10.785 10.597 11.194 10.177 15.646 11.342 10.992 10.886 10.076 12.773 7.275 2.697 

Minimum -12.120 -11.439 -8.158 -10.532 -11.305 -11.072 -11.567 -15.496 -15.983 -11.422 -11.189 -10.693 -14.054 7.825 3.361 

Range 25.354 22.376 16.530 21.318 21.902 22.266 21.744 31.142 27.325 22.309 22.074 20.357 27.491 14.612 7.134 
  Median MAE 2.367 0.947 0.798 0.991 0.821 1.341 1.618 0.983 1.076 1.323 1.259 1.570 0.340 

 
Table 18: Empirical moments vs sample moments for stock market indexes. 

 
 

2.7. VaR Performance 
 
We now analyze the VaR performance of our estimated models restricting our attention to the left tail of 
the distribution and the 1% significance level. The choice of the 1% level is a compromise between trying 
to capture extreme events and trying to avoid a too low number of exceptions.  Results for alternative 
significance levels are available from the authors upon request. Considering the left tail is not a trivial 
choice, since results for both tails may differ significantly for asymmetric return distributions. In all cases 
we present out-of-sample VaR forecasts over the last five years in the sample: 2011-2015 (1260 data 
observations). Every day we compute 1-day ahead 1% VaR, reestimating each model every 50 days. The 
latter choice tries to reduce the computational cost as well as avoiding frequent parameter variation that 
might be due in part to just noise. 
 
We estimate the one-step ahead VaR parametrically as !"#!,! = !! ! + !! ! !!! ! ! , where !! !  
represents the conditional mean, !! !  is the conditional standard deviation and !!! ! !  denotes the 
corresponding quantile of the distribution of the standardized innovations !! at a given !% significance. 
After that, we examine the performance of VaR models through standard tests: the unconditional 
coverage test of Kupiec (1995), the independence and conditional coverage tests of Christoffersen 
(1998), the Dynamic Quantile test of Engle and Manganelli (2004), as well as by evaluating the 
Asymmetric Linear Tick loss function (AlTick) proposed by Giacomini and Komunjer (2005). For 
a comprehensive review on VaR forecasting and backtesting, see Nieto and Ruiz (2015).  
 

The unconditional coverage test introduced by Kupiec (1995) is based on the number of violations, i.e. 
the number of times (!!) that returns exceed the predicted VaR over a period ! for a given significance 
level. If the VaR model is correctly specified, the failure rate ! = !!

!
 should be equal to the pre-

specified VaR level (α).  The null hypothesis !0:  ! = ! is evaluated through a likelihood ratio test: 
 

!"!" = −2!"
! Π!
! Π = −2!"

1 − ! !!!!!
1 − ! !!!!!

!→!
χ!! 

 
where !! = ! − !!. 

 
should be equal to the pre-specified VaR level (α). The null hypothesis 
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  Median over Median over probability distributions Median over volatility models Ranges over distributions (left) 

 Sample all models N ST SKST SGED SU SGT GHST   GARCH GJRGARCH A   APARCH FGARCH and over volatility models (right) 

IBEX35                

Mean -0.005 0.018 0.007 0.028 0.011 0.006 0.012 0.029 0.009 0.046 0.015 0.007 0.004 0.023 0.042 

Standard deviation 1.495 1.743 1.592 1.474 1.874 1.685 1.743 2.004 2.400 2.049 1.750 1.516 1.674 0.926 0.532 

Skewness 0.083 -0.193 0.042 0.064 -0.272 -0.224 -0.318 -0.078 -0.740 -0.244 -0.182 -0.235 -0.079 0.804 0.165 

Kurtosis 7.932 12.364 6.875 12.419 14.043 12.206 13.732 10.226 16.545 12.860 13.755 9.423 13.217 9.670 4.333 

Maximum 13.484 13.675 10.356 12.234 15.004 13.348 14.102 14.953 16.584 15.095 13.989 10.735 14.316 6.228 4.360 

Minimum -9.586 -13.746 -9.976 -11.114 -15.613 -13.746 -15.138 -14.938 -21.414 -16.437 -13.701 -11.861 -13.792 11.438 4.576 

Range 23.070 27.584 20.332 23.348 30.866 27.208 29.557 29.891 37.448 31.533 27.690 22.596 27.791 17.115 8.936 
  Median MAE 0.853 1.237 2.483 1.580 2.174 1.630 4.130 2.459 1.820 0.953 2.001 3.277 1.505 

NASDAQ100                

Mean 0.005 0.052 0.027 0.060 0.032 0.042 0.049 0.059 0.037 0.070 0.033 0.031 0.055 0.034 0.039 

Standard deviation 1.848 1.759 1.591 1.420 1.828 1.714 1.789 1.955 2.676 1.876 1.939 1.744 1.245 1.257 0.694 

Skewness 0.192 -0.097 0.062 0.066 -0.227 -0.177 -0.297 -0.043 -0.788 -0.199 -0.140 -0.219 0.044 0.854 0.263 

Kurtosis 9.623 11.838 6.833 11.691 15.384 11.343 12.643 9.933 33.514 11.669 15.312 12.087 7.035 26.681 8.277 

Maximum 17.203 13.741 9.866 11.939 15.234 12.849 13.616 15.024 19.485 13.598 15.853 13.885 10.031 9.618 5.822 

Minimum -11.115 -14.403 -9.292 -10.803 -15.034 -13.247 -15.093 -14.524 -24.307 -14.978 -15.248 -14.469 -7.301 15.015 7.946 

Range 28.318 28.319 19.158 22.742 30.079 26.096 28.709 29.548 42.950 28.326 31.101 29.092 19.883 23.792 11.218 
  Median MAE 2.134 1.507 2.296 1.739 2.431 1.508 7.888 1.783 2.534 1.845 2.896 6.380 1.113 

FTSE100                

Mean -0.003 -0.003 -0.006 0.010 -0.005 -0.009 -0.005 0.010 -0.008 0.028 -0.003 -0.008 -0.011 0.019 0.039 

Standard deviation 1.210 1.346 1.221 1.237 1.321 1.244 1.279 1.665 1.762 1.287 1.326 1.231 1.551 0.541 0.320 

Skewness -0.161 -0.277 0.065 0.067 -0.325 -0.277 -0.404 -0.094 -0.596 -0.290 -0.261 -0.305 -0.265 0.663 0.044 

Kurtosis 9.356 11.624 7.223 11.786 13.472 12.302 13.579 10.420 21.043 11.269 14.362 9.968 17.074 13.820 7.106 

Maximum 9.384 10.687 8.027 9.726 10.406 9.813 10.133 12.133 14.531 9.083 10.786 8.984 13.586 6.504 4.602 

Minimum -9.266 -10.675 -7.673 -9.437 -10.967 -10.049 -11.161 -12.544 -16.806 -10.260 -10.751 -10.189 -14.170 9.132 3.981 

Range 18.650 21.293 15.700 19.164 21.337 19.863 21.294 24.677 31.337 19.343 21.537 19.229 27.293 15.637 8.064 

  Median MAE 0.888 0.926 1.213 0.856 1.294 1.349 4.219 0.868 1.384 0.539 2.941 3.363 2.402 

NIKKEI225                

Mean 0.000 0.012 0.012 0.012 0.012 -0.001 0.012 0.012 -0.011 0.012 0.012 0.012 0.002 0.023 0.010 

Standard deviation 1.499 1.561 1.533 1.502 1.506 1.529 1.500 2.182 1.693 1.545 1.482 1.484 1.678 0.681 0.195 

Skewness -0.410 -0.064 0.014 0.024 -0.218 -0.064 -0.336 0.000 -0.751 -0.066 -0.037 -0.061 -0.092 0.775 0.055 

Kurtosis 9.725 8.711 4.825 8.581 8.987 9.273 8.898 8.565 13.131 8.672 9.301 7.444 11.667 8.306 4.223 

Maximum 13.235 10.939 8.372 10.785 10.597 11.194 10.177 15.646 11.342 10.992 10.886 10.076 12.773 7.275 2.697 

Minimum -12.120 -11.439 -8.158 -10.532 -11.305 -11.072 -11.567 -15.496 -15.983 -11.422 -11.189 -10.693 -14.054 7.825 3.361 

Range 25.354 22.376 16.530 21.318 21.902 22.266 21.744 31.142 27.325 22.309 22.074 20.357 27.491 14.612 7.134 
  Median MAE 2.367 0.947 0.798 0.991 0.821 1.341 1.618 0.983 1.076 1.323 1.259 1.570 0.340 

 
Table 18: Empirical moments vs sample moments for stock market indexes. 

 
 

2.7. VaR Performance 
 
We now analyze the VaR performance of our estimated models restricting our attention to the left tail of 
the distribution and the 1% significance level. The choice of the 1% level is a compromise between trying 
to capture extreme events and trying to avoid a too low number of exceptions.  Results for alternative 
significance levels are available from the authors upon request. Considering the left tail is not a trivial 
choice, since results for both tails may differ significantly for asymmetric return distributions. In all cases 
we present out-of-sample VaR forecasts over the last five years in the sample: 2011-2015 (1260 data 
observations). Every day we compute 1-day ahead 1% VaR, reestimating each model every 50 days. The 
latter choice tries to reduce the computational cost as well as avoiding frequent parameter variation that 
might be due in part to just noise. 
 
We estimate the one-step ahead VaR parametrically as !"#!,! = !! ! + !! ! !!! ! ! , where !! !  
represents the conditional mean, !! !  is the conditional standard deviation and !!! ! !  denotes the 
corresponding quantile of the distribution of the standardized innovations !! at a given !% significance. 
After that, we examine the performance of VaR models through standard tests: the unconditional 
coverage test of Kupiec (1995), the independence and conditional coverage tests of Christoffersen 
(1998), the Dynamic Quantile test of Engle and Manganelli (2004), as well as by evaluating the 
Asymmetric Linear Tick loss function (AlTick) proposed by Giacomini and Komunjer (2005). For 
a comprehensive review on VaR forecasting and backtesting, see Nieto and Ruiz (2015).  
 

The unconditional coverage test introduced by Kupiec (1995) is based on the number of violations, i.e. 
the number of times (!!) that returns exceed the predicted VaR over a period ! for a given significance 
level. If the VaR model is correctly specified, the failure rate ! = !!

!
 should be equal to the pre-

specified VaR level (α).  The null hypothesis !0:  ! = ! is evaluated through a likelihood ratio test: 
 

!"!" = −2!"
! Π!
! Π = −2!"

1 − ! !!!!!
1 − ! !!!!!

!→!
χ!! 

 
where !! = ! − !!. 

 is evaluated through a likelihood ratio test:
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  Median over Median over probability distributions Median over volatility models Ranges over distributions (left) 

 Sample all models N ST SKST SGED SU SGT GHST   GARCH GJRGARCH A   APARCH FGARCH and over volatility models (right) 

IBEX35                

Mean -0.005 0.018 0.007 0.028 0.011 0.006 0.012 0.029 0.009 0.046 0.015 0.007 0.004 0.023 0.042 

Standard deviation 1.495 1.743 1.592 1.474 1.874 1.685 1.743 2.004 2.400 2.049 1.750 1.516 1.674 0.926 0.532 

Skewness 0.083 -0.193 0.042 0.064 -0.272 -0.224 -0.318 -0.078 -0.740 -0.244 -0.182 -0.235 -0.079 0.804 0.165 

Kurtosis 7.932 12.364 6.875 12.419 14.043 12.206 13.732 10.226 16.545 12.860 13.755 9.423 13.217 9.670 4.333 

Maximum 13.484 13.675 10.356 12.234 15.004 13.348 14.102 14.953 16.584 15.095 13.989 10.735 14.316 6.228 4.360 

Minimum -9.586 -13.746 -9.976 -11.114 -15.613 -13.746 -15.138 -14.938 -21.414 -16.437 -13.701 -11.861 -13.792 11.438 4.576 

Range 23.070 27.584 20.332 23.348 30.866 27.208 29.557 29.891 37.448 31.533 27.690 22.596 27.791 17.115 8.936 
  Median MAE 0.853 1.237 2.483 1.580 2.174 1.630 4.130 2.459 1.820 0.953 2.001 3.277 1.505 
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Mean 0.005 0.052 0.027 0.060 0.032 0.042 0.049 0.059 0.037 0.070 0.033 0.031 0.055 0.034 0.039 

Standard deviation 1.848 1.759 1.591 1.420 1.828 1.714 1.789 1.955 2.676 1.876 1.939 1.744 1.245 1.257 0.694 

Skewness 0.192 -0.097 0.062 0.066 -0.227 -0.177 -0.297 -0.043 -0.788 -0.199 -0.140 -0.219 0.044 0.854 0.263 

Kurtosis 9.623 11.838 6.833 11.691 15.384 11.343 12.643 9.933 33.514 11.669 15.312 12.087 7.035 26.681 8.277 

Maximum 17.203 13.741 9.866 11.939 15.234 12.849 13.616 15.024 19.485 13.598 15.853 13.885 10.031 9.618 5.822 

Minimum -11.115 -14.403 -9.292 -10.803 -15.034 -13.247 -15.093 -14.524 -24.307 -14.978 -15.248 -14.469 -7.301 15.015 7.946 

Range 28.318 28.319 19.158 22.742 30.079 26.096 28.709 29.548 42.950 28.326 31.101 29.092 19.883 23.792 11.218 
  Median MAE 2.134 1.507 2.296 1.739 2.431 1.508 7.888 1.783 2.534 1.845 2.896 6.380 1.113 
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Mean -0.003 -0.003 -0.006 0.010 -0.005 -0.009 -0.005 0.010 -0.008 0.028 -0.003 -0.008 -0.011 0.019 0.039 

Standard deviation 1.210 1.346 1.221 1.237 1.321 1.244 1.279 1.665 1.762 1.287 1.326 1.231 1.551 0.541 0.320 

Skewness -0.161 -0.277 0.065 0.067 -0.325 -0.277 -0.404 -0.094 -0.596 -0.290 -0.261 -0.305 -0.265 0.663 0.044 

Kurtosis 9.356 11.624 7.223 11.786 13.472 12.302 13.579 10.420 21.043 11.269 14.362 9.968 17.074 13.820 7.106 

Maximum 9.384 10.687 8.027 9.726 10.406 9.813 10.133 12.133 14.531 9.083 10.786 8.984 13.586 6.504 4.602 

Minimum -9.266 -10.675 -7.673 -9.437 -10.967 -10.049 -11.161 -12.544 -16.806 -10.260 -10.751 -10.189 -14.170 9.132 3.981 

Range 18.650 21.293 15.700 19.164 21.337 19.863 21.294 24.677 31.337 19.343 21.537 19.229 27.293 15.637 8.064 

  Median MAE 0.888 0.926 1.213 0.856 1.294 1.349 4.219 0.868 1.384 0.539 2.941 3.363 2.402 

NIKKEI225                

Mean 0.000 0.012 0.012 0.012 0.012 -0.001 0.012 0.012 -0.011 0.012 0.012 0.012 0.002 0.023 0.010 

Standard deviation 1.499 1.561 1.533 1.502 1.506 1.529 1.500 2.182 1.693 1.545 1.482 1.484 1.678 0.681 0.195 

Skewness -0.410 -0.064 0.014 0.024 -0.218 -0.064 -0.336 0.000 -0.751 -0.066 -0.037 -0.061 -0.092 0.775 0.055 

Kurtosis 9.725 8.711 4.825 8.581 8.987 9.273 8.898 8.565 13.131 8.672 9.301 7.444 11.667 8.306 4.223 

Maximum 13.235 10.939 8.372 10.785 10.597 11.194 10.177 15.646 11.342 10.992 10.886 10.076 12.773 7.275 2.697 

Minimum -12.120 -11.439 -8.158 -10.532 -11.305 -11.072 -11.567 -15.496 -15.983 -11.422 -11.189 -10.693 -14.054 7.825 3.361 

Range 25.354 22.376 16.530 21.318 21.902 22.266 21.744 31.142 27.325 22.309 22.074 20.357 27.491 14.612 7.134 
  Median MAE 2.367 0.947 0.798 0.991 0.821 1.341 1.618 0.983 1.076 1.323 1.259 1.570 0.340 

 
Table 18: Empirical moments vs sample moments for stock market indexes. 

 
 

2.7. VaR Performance 
 
We now analyze the VaR performance of our estimated models restricting our attention to the left tail of 
the distribution and the 1% significance level. The choice of the 1% level is a compromise between trying 
to capture extreme events and trying to avoid a too low number of exceptions.  Results for alternative 
significance levels are available from the authors upon request. Considering the left tail is not a trivial 
choice, since results for both tails may differ significantly for asymmetric return distributions. In all cases 
we present out-of-sample VaR forecasts over the last five years in the sample: 2011-2015 (1260 data 
observations). Every day we compute 1-day ahead 1% VaR, reestimating each model every 50 days. The 
latter choice tries to reduce the computational cost as well as avoiding frequent parameter variation that 
might be due in part to just noise. 
 
We estimate the one-step ahead VaR parametrically as !"#!,! = !! ! + !! ! !!! ! ! , where !! !  
represents the conditional mean, !! !  is the conditional standard deviation and !!! ! !  denotes the 
corresponding quantile of the distribution of the standardized innovations !! at a given !% significance. 
After that, we examine the performance of VaR models through standard tests: the unconditional 
coverage test of Kupiec (1995), the independence and conditional coverage tests of Christoffersen 
(1998), the Dynamic Quantile test of Engle and Manganelli (2004), as well as by evaluating the 
Asymmetric Linear Tick loss function (AlTick) proposed by Giacomini and Komunjer (2005). For 
a comprehensive review on VaR forecasting and backtesting, see Nieto and Ruiz (2015).  
 

The unconditional coverage test introduced by Kupiec (1995) is based on the number of violations, i.e. 
the number of times (!!) that returns exceed the predicted VaR over a period ! for a given significance 
level. If the VaR model is correctly specified, the failure rate ! = !!

!
 should be equal to the pre-

specified VaR level (α).  The null hypothesis !0:  ! = ! is evaluated through a likelihood ratio test: 
 

!"!" = −2!"
! Π!
! Π = −2!"

1 − ! !!!!!
1 − ! !!!!!

!→!
χ!! 

 
where !! = ! − !!. where T0 = T – T1.

Two other tests by Christoffersen (1998) examine whether VaR excee-
dances are independent. We consider two states of nature each period: 
state 0 if the return does not fall below VaR: 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 

!"#! ! = !! + !!!"#!!!

!

!!!

+ !!!!!!

!

!!!

+ !! 

 
are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 

!"#! ! = !! + !!!"#!!!

!

!!!

+ !!!!!!

!

!!!

+ !! 

 
are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 

. For the alternative hypothesis of VaR inefficiency, it is as-
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 

!"#! ! = !! + !!!"#!!!
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!!!

+ !! 

 
are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 

!"#! ! = !! + !!!"#!!!
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 

and 

54 
 

Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 

 otherwise, can be modeled as a Markov chain with 

54 
 

Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 

. Let us then denote by Tij the number of 
observations in state j after having been in state i in the previous period 
and define T0 = T00 + T10 and T1 = T11 + T01. The two probabilities of a 
VaR excess (state 1), conditional on the state of the previous period π01 
and π11 are estimated by π̂01 = T01 /(T00+ T01) and π̂11 = T11 /(T10 + T11). Under 
the null hypothesis of independence of VaR exceedances: π01 = π11 = π = 
(T11+ T01)/T, the likelihood function is 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 

The likelihood under the alternative hypothesis is: 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 

!"#! ! = !! + !!!"#!!!

!

!!!

+ !!!!!!

!

!!!

+ !! 

 
are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 

!"#! ! = !! + !!!"#!!!
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!

!!!

+ !! 

 
are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 

!"#! ! = !! + !!!"#!!!
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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form of alternative dependence structure that does not take into account 
a dependence of order higher than one, ii) the use of a Markov chain 
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only considers the influence of past violations It(α) and not the influence 
of any other exogenous variable. The Dynamic Quantile Test propo-
sed by Engle and Manganelli (2004) overcomes these two drawbacks 
of the conditional coverage test. These authors suggest using a linear 
regression model that links current violations to past violations. Let us 
define the auxiliary variable: Hitt(α) = It(α) – α , so that Hitt(α) = 1 – α 
if 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 

!"#! ! = !! + !!!"#!!!
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!!!

+ !!!!!!

!

!!!

+ !! 

 
are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 

 otherwise. The null hypothesis 
of this test is that the sequence of hits (Hitt) is uncorrelated with any 
variable that belongs to the information set Ωt–1 available when the VaR 
was calculated and it has a mean value of zero, which implies that the 
hits are not autocorrelated. The Dynamic Quantile test is a Wald test of 
the null hypothesis that all slopes in the regression model,
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
violations to past violations. Let us define the  auxiliary variable:  !"#! ! =    !! ! − !,  so that 
!"#! ! =   1 − ! if !!   <   !  !"!|!!!(!) and !"#! ! = −! otherwise. The null hypothesis of this test is 
that the sequence of hits (!"#!) is uncorrelated with any variable that belongs to the information set 
Ω!!!  available when the VaR was calculated and it has a mean value of zero, which implies that the hits 
are not autocorrelated. The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in 
the regression model, 
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are zero, where !!  are explanatory variables contained in Ω!!!. The test statistic has an asymptotic 
!!!!!!! distribution. In our implementation of the test, we use ! = 5 and ! = 1 (where !! = !"#(!)) as 
proposed Engle and Manganelli (2004). By doing so, we are testing whether the probability of an 
exception depends on the level of VaR. 
 
To evaluate the consequences of a VaR exceedance, we use the Asymmetric Linear Tick loss function 
(AlTick) proposed by Giacomini and Komunjer (2005), which takes into account the magnitude of the 
implicit cost associated with VaR forecasting errors. Hence, it takes into consideration not only the 
returns that exceed the VaR, but also the opportunity cost produced by an overestimation of VaR. When 
there are not exceptions, the loss function penalizes for the excess capital retained: 
 

!! !!!! = ! − 1 !!!!  !"  !!!! < 0  
!!!!!                              !"  !!!! ≥ 0  

 
where  !!!! = !!!! − !"#!!!. Giacomini and Komunjer use the asymmetric linear loss function with ! 
equal to the significance level used to forecast VaR. The AlTick function can be seen as the implicit loss 
function whenever the object of interest is a forecast of a particular quantile of the conditional distribution 
of returns. That way, a VaR model is preferable if it has a lower average value of the loss function. 
 
The different combinations of probability distributions and volatility specifications, applied to each of the 
19 assets considered, yield a large number of VaR tests and it is hard to summarize so much information 
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Two other tests by Christoffersen (1998) examine whether VaR exceedances are independent.   We 
consider two states of nature each period:  state 0 if the return does not fall below VaR: !! < !"#!, and 
state 1, if !! < !"#!. For the alternative hypothesis of VaR inefficiency, it is assumed that the process of 
violations !! ! , where !! ! = 1 if !! < !"#!  and !! ! = 0 otherwise, can be modeled as a Markov 
chain with !!" = Pr !! ! = ! !!!! ! = ! .  Let us then denote by Tij the number of observations in state 
! after having been in state ! in the previous period and define !!   =   !!! +  !!" and !! =   !!! +  !!". The 
two probabilities of a VaR excess (state 1), conditional on the state of the previous period  !!" and  !!!  
are  estimated  by  !!" = !!"/(!!! + !!") and  !!! = !!!/(!!" + !!!). Under the null hypothesis of 
independence  of  VaR  exceedances: !!" =   !!! = ! = (!!! + !!")/! , the likelihood function is 
! Π = 1 − ! !!!!!. 
The likelihood under the alternative hypothesis is: ! Π! = 1 − !!" !!!!!"

!!" 1 − !!! !!"!!!
!!!. 

The independence test of Christoffersen (1998) is a test of the hypothesis of serial independence in VaR 
exceedances against a first-order Markov dependence. The likelihood ratio !"!"#  statistic is: !"!"# =
−2ln(!(Π)/!(Π!)) with a distribution !!!. The conditional coverage test is based on the likelihood ratio 
statistic, !"!! = −2ln(!(Π!)/!(Π!))=  !"!" + !"!"#, which is asymptotically distributed !!!. 
 
While the conditional coverage test is easy to use, it is rather limited for two main reasons, i) the 
independence is tested against a very particular form of alternative dependence structure that does not 
take into account a dependence of order higher than one, ii) the use of a Markov chain only considers the 
influence of past violations !!(!) and not the influence of any other exogenous variable. The Dynamic 
Quantile Test proposed by Engle and Manganelli (2004) overcomes these two drawbacks of the 
conditional coverage test.  These authors suggest using a linear regression model that links current 
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tric linear loss function with α equal to the significance level used to fo-
recast VaR. The AlTick function can be seen as the implicit loss function 
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whenever the object of interest is a forecast of a particular quantile of 
the conditional distribution of returns. That way, a VaR model is prefe-
rable if it has a lower average value of the loss function.

The different combinations of probability distributions and volatility 
specifications, applied to each of the 19 assets considered, yield a large 
number of VaR tests and it is hard to summarize so much information 
in order to achieve some clear-cut conclusion on the adequacy of each 
model.

Some authors compare VaR methodologies using a two-stage selection 
process. This approach proposed by Sarma et al. (2003) consists in remo-
ving in a first stage those methods or models that fail to pass statistical 
accuracy tests (backtesting) like those described above. The VaR models 
selected in this stage are then compared in a second stage on the basis 
of loss functions. Even though this two-stage selection approach helps 
in selecting a smaller set of competing models, it could fail to identify 
suitable models because they might have been removed in the first sta-
ge. Indeed, a model may be rejected in the first stage because of failing 
to pass a given test at a specific confidence level, despite producing a 
smaller loss than another one that has been judged to be statistically ap-
propriate in the first stage. In the extreme case when we identify a single 
model as appropriate in the first stage, we would be making a decision 
based on statistical accuracy tests without taking into account the size 
of the losses beyond the VaR. Under that approach the VaR accuracy 
tests resemble more a decision-making process than an evaluation using 
loss functions.

Instead, we will proceed in the next section along four lines: i) the fre-
quency of rejections of a given model when applying each test to the 
set of assets, ii) how often the p-value of a given test decreases when 
switching between two models differing in either the probability distri-
bution or the volatility specification, iii) selecting the preferred models 
by a concept of Dominance among VaR models we introduce below, iv) 
implementing a Model Confidence Set approach to select the preferred 
VaR models for each asset. This approach is based on the use of a spe-
cific loss function. The first three criteria are based on properties of the 
tests for validation of VaR forecasts, while the fourth criterion deals with 
the size of the sample returns exceeding the estimated VaR.
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2.7.1.	 Frequency of violations

For each asset, we calculate the number of observed violations of VaR 
forecasts, the statistic and p-value of each test for each combination 
of volatility model and probability distribution for the innovations20. 
Naturally, violation rates close to α = 0.01 (13 violations) are desirable. 
Further, under the Basel Accord, models that over-estimate risk are pre-
ferable to those that under-estimate risk levels. In our case, less than 20 
violations of VaR would define the ’green zone’, between 20 and 50 vio-
lations would correspond to the ’yellow zone’ and the ’red zone’ would 
be defined by more than 50 violations21. In fact, falling inside the green 
zone is not necessarily a good thing if the number of violations of VaR 
is too low, since then the bank would be taking an excessive opportunity 
cost of capital.

We never observed a model to fall in the red zone for any asset. The 
expected number of violations (13) falls in the green zone, so a good 
model should be in that zone. Across the 76 VaR analysis performed (4 
volatility specifications and 19 assets) models under the Normal distri-
bution fell in the green zone 26 times out of 76 (34%), 55 times under 
the Student-t distribution (72%), 72 times under SKST (95%), 69 times 
under SGED (91%), 75 times under JSU (99%), 73 times under SGT (96%) 
and 70 times under GHST (92%). All the other models fell in the yellow 
zone. The Normal distribution falls too often in the yellow zone. The 
frequency of the Student-t distribution to produce a model in the green 
zone was not very high either. All other probability distributions lead 
frequently to models in the green zone.

Figure 13 shows the median number of VaR violations for each combi-
nation of probability distribution and volatility specification. The Nor-
mal distribution leads to the largest median number of violations (22) 

20.  These results are available from the author upon request.
21.  In terms of Basel Accord, based on a sample of 250 observations, if the number of exceptions is 
less than, or equal to 4 (the green zone), the test results are consistent with an accurate model and the 
possibility of erroneously accepting an inaccurate model is low. At the other extreme, if there are 10 or more 
exceptions (the red zone), the test results are extremely unlikely to have resulted from an accurate model, 
and the probability of erroneously rejecting an accurate model on this basis is remote. In between these 
two cases we have the yellow zone, where the backtesting results could be consistent with either accurate 
or inaccurate models, and the supervisor should encourage a bank to present additional information about 
its model before taking action. We have applied to these thresholds a scale factor based on our sample size 
of 1260 observations.
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Figure 13: Median number of VaR violations for each model over the set of 19 assets

across the 76 models (4 volatility specifications and 19 assets). Since 
the expected number of violations is 13, the Normal distribution clearly 
underestimates the level of risk. The GHST distribution produces the lowest 
median number of violations (10), with a clear overestimation of risk. All 
the other probability distributions have a median number of violations 
around 15, with a slight underestimation of risk that is more evident 
for the Student-t distribution. We can say that except by the Normal 
and GHST distributions, all other distributions perform well. Being more 
specific, the median frequency of violations is 1.75% for models with 
Normal innovations, 1.27% for Student-t innovations, 1.19% for skewed 
Student-t, skewed Generalized Error and skewed Generalized-t innovations, 
1.11% for Johnson SU innovations and 0.79% for Generalized Hyperbolic 
skew Student-t innovations. According to the frequency of violations, 
the unbounded Johnson SU distribution shows the best behavior among the 
asymmetric probability distributions. The performance of GHST might be 
acceptable under some criteria, although it would lead to an excessive 
opportunity cost of capital.

Differences among volatility specifications are much smaller. Models 
with a GARCH specification fell 114 times out of 133 cases (7 probability 
distributions and 19 assets) in the green zone (86%), 109 times for the GJR-
GARCH (82%), 108 times for APARCH (81%) and 109 times for FGARCH 
(82%) out of 133 VaR analysis. The median number of violations was 15, 
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15, 16 and 16, respectively, very similar across volatility specifications. 
The frequency of violations for all volatility specifications is 1.19% for 
GARCH and GJR-GARCH, and 1.27% for APARCH and FGARCH models. 
This result already suggests the need to be careful when choosing an 
appropriate probability distribution for return innovations. Selecting the 
best volatility specification is also important, but the consequences 
of not making the right choice do not seem to be so crucial.

It is also interesting to examine the performance by asset type. Most 
models tend to overestimate risk in energy commodities (OIL and GAS). 
The median number of violations over the set of 28 models (7 probabi-
lity distributions and 4 volatility specifications) is 7 for OIL and 5 for 
GAS (see Figure 14). A similar result is obtained for the GBP/USD and 
AUD/USD exchange rates, with a median number of 10 violations in 
both cases, which is not the case for the two other exchange rates22. But 
the general result is that more often than not, models tend to underesti-
mate risk in all assets, with a number of violations above the expected 
value of 13. Underestimation is especially evident in the non-industrial 
metals (GOLD and SILVER) and some Spanish stock market variables 
(SAN and IBEX).

2.7.2.	 Switching between models

For 19 assets, we have a total of 216 tests performed under each probabi-
lity distribution, and 378 tests under each volatility specification23. They 
produce a large amount of information, and we need to design ways to 
summarize that information in order to be able to draw some conclusion 
on the relative merits of each probability distribution and each volatility 
specification. This is what we do in the next sections.

We start by comparing, for each of the four VaR tests described above 
(Kupiec, independence, conditional coverage and Dynamic Quantile 
tests), the p-values of the test statistics for models that differ in either 
the probability distribution for the innovations or in the specification of

22.  The median number of violations is also below 13 for BP, but it is so close to that target that we have 
to consider the difference as sampling error.
23.  Notice that the independence and the conditional coverage tests not always can be applied.
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Figure 14: Median number of VaR violations for each asset over the set of 28 models
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- Pág 98: Sustituir la Table 19 por la siguiente, 
 
 !"!" !"!"# !"!! !"# Total 
Total number of statistics 76 32 32 76 216 
Increases/Decreases ⇑ ⇓ ⇑ ⇓ ⇑ ⇓ ⇑ ⇓ ⇑ ⇓ 
! → !" 64 12 8 24 30 2 58 18 160 56 
!" → !"!# 45 11 9 20 21 7 39 37 114 75 
!"!# → !"# 25 6 4 15 16 4 46 30 91 55 
!"!# → !"# 14 15 6 12 16 2 49 27 85 56 
!"!# → !"#$ 33 37 9 19 11 16 32 44 85 116 
!"!# → !"#$ 17 16 5 15 14 6 47 29 83 66 
!"#$ → !"# 28 13 8 9 9 8 41 35 86 65 
!"#$ → !"# 6 11 7 2 6 3 52 24 71 40 
!"#$ → !"#$ 29 38 9 16 8 17 29 47 75 118 
!"# → !"# 10 30 12 6 9 9 43 33 74 78 
!"# → !"#$ 22 43 8 17 8 18 25 51 63 129 
!"# → !"#$ 29 29 6 16 2 20 29 47 66 112 
Total number of statistics 133 56 56 133 378 
Increases/Decreases ⇑ ⇓ ⇑ ⇓ ⇑ ⇓ ⇑ ⇓ ⇑ ⇓ 
!"#$% → !"#!$#%& 46 56 36 19 35 21 59 74 176 170 
!"#!$#%& → !"!#$% 32 50 25 16 16 26 58 75 131 167 
!"!#$% → !"#$%& 34 44 21 13 18 16 78 55 151 128 
 
 
 
 
 
 
 
 
 
 
 
 
 

volatility dynamics. In these tests the null hypothesis is H0: the VaR mo-
del is ’appropriate’, in some sense that is specific to each test. As the pro-
bability of finding a similar sample with a more contrary evidence to H0, 
the p-value gives us a numerical indication on how favorable our sample 
to H0 is. Hence, when comparing any two VaR forecasting models, we 
should prefer the one with a higher p-value in VaR validation tests. To 
summarize the results of this analysis, Table 19 displays the number of 
cases in which the p-value of the test statistic increases or decreases when 
we change either the probability distribution or by the specification of the 
volatility model. We cannot make any formal testing, but by comparing 
p-values, we are searching for patterns that might suggest that a particu-
lar model is preferred over a given alternative.

If we consider all the possible specifications sharing the same proba-
bility distribution for return innovations, we see that switching from a 
Normal to a Student-t distribution for return innovations increases the 
p-value of VaR tests in 160 out of a total of 216 comparisons, suggesting 
in those cases a more accurate VaR model24. Even though the test statis-
tics are obviously subject to sampling error, that frequency of increases 

24.  The number of possible comparisons arises from applying all the VaR tests to all the assets. The 
difference between this number and the sum of increases and decreases in the p-value is the number of cases 
in which the p-value of the test statistic does not change.
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in p-value suggests that, as expected, the Student-t distribution is ge-
nerally more appropriate than the Normal distribution to represent fi-
nancial returns. Switching from the symmetric to the skewed Student-t 
distribution achieves a further increase in p-value in 114 comparisons, 
while decreasing in 75 cases. Moving from the asymmetric Student-t 
to the unbounded Johnson distribution achieves an increase in 91 cases 
while decreasing in 55 cases. Switching from the asymmetric Student-t 
(SKST) to other asymmetric distributions (SGT, JSU, SGED), the p-value 
increases more often than otherwise. On the contrary, if we switch from 
the SKST, SGED, JSU or SGT distributions to the GHST distribution, the 
opposite happens, with the p-value usually decreasing. Hence, we consi-
der the SKST, SGED, JSU and SGT distributions to be preferable to GHST. 
Between these asymmetric distributions, switching to JSU or SGT leads 
to an increase in p-value in a greater number of cases.

Among volatility models, switching from the symmetric GARCH to GJR-
GARCH increases the p-value of the statistic in 176 out of 378 comparisons. 
The p-value increases in 131 cases when switching from GJR-GARCH to 
APARCH, but it decreases in 167 cases. 

On the other hand, if we move from the APARCH to the FGARCH model, 
the p-value increases in 151 out of 378 cases, decreasing in 128 cases. 
Overall, the FGARCH model seems to be the preferable volatility speci-
fication. Percent differences between the number of cases in which the 
value of the test statistic increases or decreases when switching between 
volatility models are much smaller than the ones obtained when swit-
ching between two probability distributions. This suggests again that, 
according to the performance of the models for VaR estimation, the 
specification of the volatility dynamics is not as important as the choice 
of probability distribution for the innovation in returns.

2.7.3.	 Dominance among VaR models

In the previous sections we have used four backtesting tests for VaR 
performance: the unconditional likelihood-ratio test, the independence 
test, the conditional coverage test, and the dynamic quantile test, and 
each test has been run for a variety of models and assets. In this section 
we evaluate the adequacy of the different models considered for VaR 
forecasting by comparing the specific situations in which each model 
has been rejected by each test.
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Table 19: Number of cases in which the p-value of the test statistic increases 
or decreases when changing the probability distribution or the volatility model 
for all assets

For each test, the left (right) column shows the number of cases when the p-value 
increases (decreases) when switching between probability distributions (upper pa-
nel) or between volatility models (lower panel). The last two columns show the 
results when aggregating results for the four tests. LRuc denotes the unconditional 
coverage test of Kupiec and LRind and LRcc are the independence and the condi-
tional coverage tests of Christoffersen, respectively. DQT denotes the Dynamic 
Quantile test. Rows with bold figures show the total number of tests run.

LRuc LRind LRcc DQT Total

Total number of statistics 76 32 32 76 216

Increases/Decreases ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

N → ST 64 12 8 24 30 2 58 18 160 56

ST → SKST 45 11 9 20 21 7 39 37 114 75

SKST → JSU 25 6 4 15 16 4 46 30 91 55

SKST → SGT 14 15 6 12 16 2 49 27 85 56

SKST → GHST 33 37 9 19 11 16 32 44 85 116

SKST → SGED 17 16 5 15 14 6 47 29 83 66

SGED → JSU 28 13 8 9 9 8 41 35 86 65

SGED → SGT 6 11 7 2 6 3 52 24 71 40

SGED → GHST 29 38 9 16 8 17 29 47 75 118

JSU → SGT 10 30 12 6 9 9 43 33 74 78

JSU → GHST 22 43 8 17 8 18 25 51 63 129

SGT → GHST 29 29 6 16 2 20 29 47 66 112

Total number of statistics 133 56 56 133 378

Increases/Decreases ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

GARCH → GJRGARCH 46 56 36 19 35 21 59 74 176 170

GJRGARCH → APARCH 32 50 25 16 16 26 58 75 131 167

APARCH → FGARCH 34 44 21 13 18 16 78 55 151 128
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We base our analysis in a new concept of dominance between VaR 
models we introduce in this chapter25. Let us consider k tests that we 
apply to m alternative models to represent the dynamics of n assets. 
Each model is estimated for each of the n assets and subject to the 
k tests.

Definition 1. We say that model M1 is dominated by model M2 if i) M1 
has been rejected in at least as many cases as M2, and ii) whenever M2 
is rejected by a test, M1 is also rejected.

This definition introduces a transitive relationship among VaR models, 
although it is too strong to be satisfied in practice. So, we also consider 
the weaker concept of p-dominance.

Definition 2. Given a confidence level between 0 and 1, we say that 
model M1 is p-dominated by model M2 if i) M1 has been rejected in at 
least as many cases as M2, and ii) in a percentage of at least p of the 
cases when M2 is rejected by a test, M1 is also rejected.

In the special case p = 1 we have the first dominance criterion above. 
Unfortunately, for p < 1 , p-dominance is not a transitive relationship. 
Notice that p does not need to be related to the confidence level at 
which VaR validation tests are implemented. We would expect p to be 
around .90 in most practical applications.

The interesting feature of this dominance criterion is that it compares 
any two model specifications across all the statistical tests and assets 
thereby allowing us to achieve some robust results. The criterion could 
accommodate different weights for each test depending on the relevance 
we want to assign them. The dominance criterion would then use the 
number of rejections in each test, weighted by relevance. An interesting 
possibility would consist of assigning a larger weight to tests having 
a larger ability to discriminate among models. Weights could also be 
chosen as a bounded function of the size of the test rejection, either in 
terms of the test statistic or the p-value of the test.

25.  Sener et al. (2012) introduce a ranking model and a complementary predictive ability test statistic to 
investigate the forecasting performances of different Value at Risk (VaR) methods. The increasing literature 
on competitions among a wide array of alternative forecasting models is stimulating a well needed literature 
on this issue.
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The dominance criterion could also be used to choose among forecas-
ting models that are required to satisfy some condition to be considered 
acceptable. For instance, if competing models are used over a number 
of periods to forecast a given variable, and there is a maximum forecast 
error that is acceptable, the dominance relationship would be based on 
the number of periods in which each model exceeds that error threshold.

Table 20 contains the information needed to establish dominance compari-
sons. The upper panel corresponds to implementing the VaR validation tests 
at 99% confidence, while the lower panel has been obtained with test results 
implemented at 95% confidence. In each panel, the upper part compares 
the rejections of models using probability distributions D1 (left) and D2 
(right) when combined with all the volatility specifications. The lower part 
compares the rejections of models made up with volatility specifications M1 
(left) and M2 (right) when combined with all the probability distributions. 
The first two columns of each panel in Table 20 show the number of cases 
when the two probability distributions or the two volatility specifications 
listed in the first column have been rejected by the data when applying 
the unconditional coverage tests of Kupiec. The third column displays the 
percentage of rejections of D2 (M2) that were also rejections of D1 (M1). 
We will conclude that the probability distribution (or the volatility spe-
cification) with the lower number of rejections dominates the competitor 
when this percentage is below a pre-specified threshold for p. The following 
three columns refer to the independence tests, and the next columns come 
from the conditional coverage test and the Dynamic Quantile test. The 
final three columns aggregate the number of rejections across tests. For 
instance, if we take a threshold of .90 for p-dominance, the independence 
test of Kupiec rejected 36 models made up with the Normal distribution 
and just 7 models with the Student-t distribution. Besides, those 7 models 
rejected under the Student-t distribution were also rejected under a Nor-
mal distribution. Hence, the Student-t distribution dominates the Normal 
distribution according to this test. The independence test rejected 7 models 
made up with either the Normal or the Student-t distributions. In 5 of the 7 
rejections under a Student-t distribution for return innovations the model 
was also rejected under a Normal distribution. That ratio is 5/7=0.714, so 
that we could not conclude that models with a Student-t distribution for 
return innovations dominate models with a Normal distribution according 
to the independence test.
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Table 20: Dominance between VaR models 

The upper panel shows results from tests implemented at 1% significance, 
while the lower panel shows results from tests at the 5% significance level. 
n1 is the number of tests in which H0 is rejected when D1 (M1) is specified as 
distribution (volatility model) for the different assets, n2 is the number of tests 
in which H0 is rejected when D2 (M2) is the probability distribution (volatility 
model) for the different assets and p is the proportion of times that H0 is re-
jected with both D2 (M2) and D1 (M1). Rows with bold figures show the total 
number of tests run.

Confidence level 99% LRuc LRind LRcc DQT TOTAL

Total number statistics 76 32 32 76 216

D1 → D2 n1 n2 p n1 n2 p n1 n2 p n1 n2 p n1 n2 p

N → ST 36 7 1 7 7 0.714 25 13 1 44 29 1 112 56 0.964

ST → SKST 7 0 1 7 6 0.833 13 7 1 29 21 1 56 34 0.971

SKST → JSU 0 0 1 6 4 1 7 4 1 21 21 0.952 34 29 0.966

SKST → SGT 0 1 0 6 5 1 7 6 1 21 21 0.952 34 33 0.939

SGED → SKST 1 0 1 6 6 0.833 7 7 0.857 22 21 1 36 34 0.941

SGED → JSU 1 0 1 6 4 1 7 4 1 22 21 1 36 29 1

SGED → SGT 1 1 1 6 5 1 7 6 1 22 21 1 36 33 1

SGT → JSU 1 0 1 5 4 1 6 4 1 21 21 1 33 29 1

GHST → SKST 9 0 1 7 6 0.667 9 7 1 24 21 0.762 49 34 0.794

GHST → SGED 9 1 1 7 6 1 9 7 1 24 22 0.727 49 36 0.833

GHST → JSU 9 0 1 7 4 1 9 4 1 24 21 0.714 49 29 0.793

GHST → SGT 9 1 1 7 5 1 9 6 1 24 21 0.714 49 33 0.818

Total number statistics 133 56 56 133 378

M1 → M2 n1 n2 p n1 n2 p n1 n2 p n1 n2 p n1 n2 p

GARCH → GJRGARCH 10 12 0.833 9 9 0.778 16 12 0.917 48 45 0.844 83 78 0.846

GJRGARCH → APARCH 12 14 0.714 9 13 0.615 12 23 0.609 45 46 0.739 78 96 0.688

APARCH → FGARCH 14 18 0.722 13 11 0.818 23 20 0.800 46 43 0.930 96 92 0.848
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Confidence level 95% LRuc LRind LRcc DQT TOTAL

Total number statistics 76 32 32 76 216

D1 → D2 n1 n2 p n1 n2 p n1 n2 p n1 n2 p n1 n2 p

N → ST 50 23 0.826 13 13 0.769 32 23 1 52 35 1 147 94 0.926

ST → SKST 23 6 1 13 16 0.813 23 18 1 35 27 0.963 94 67 0.940

SKST → JSU 6 3 1 16 17 0.941 18 17 1 27 25 0.960 67 62 0.968

SKST → SGT 6 6 1 16 16 0.875 18 17 1 27 28 0.964 67 67 0.955

SGED → SKST 8 6 0.833 17 16 1 18 18 1 28 27 1 71 67 0.985

SGED → JSU 8 3 1 17 17 0.941 18 17 1 28 25 1 71 62 0.984

SGED → SGT 8 6 1 17 16 1 18 17 1 28 28 0.964 71 67 0.985

SGT → JSU 8 3 1 16 17 0.882 17 17 0.941 28 25 1 67 62 0.866

GHST → SKST 21 6 0.833 17 16 0.938 19 18 0.944 30 27 0.926 87 67 0.925

GHST → SGED 21 8 0.875 17 17 0.882 19 18 0.944 30 28 0.929 87 71 0.901

GHST → JSU 21 3 1 17 17 0.882 19 17 0.941 30 25 1 87 62 0.952

GHST → SGT 21 6 1 17 16 0.875 19 17 0.941 30 28 0.929 87 67 0.925

Total number statistics 133 56 56 133 378

M1 → M2 n1 n2 p n1 n2 p n1 n2 p n1 n2 p n1 n2 p

GARCH → GJRGARCH 23 30 0.700 32 30 0.867 40 37 0.865 56 51 0.863 151 148 0.831

GJRGARCH → APARCH 30 33 0.758 30 25 0.960 37 36 0.972 51 59 0.797 148 153 0.856

APARCH → FGARCH 33 31 0.968 25 22 0.955 36 32 1 59 59 0.915 153 144 0.951

The number of pairwise comparisons between probability distributions 
or between volatility specifications is very high because they could be 
made in both directions, so we show in Table 20 the more interesting 
ones. For instance, we do not explicitly show the comparisons between 
the Normal distribution and asymmetric distributions because the latter 
always dominate. Similarly, we do not show pairwise comparisons bet-
ween Student-t and any asymmetric distribution other than the skewed 
Student-t (SKST) because the skewed Student-t tends to p-dominate the 
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standard Student-t, and the majority of asymmetric distributions p-do-
minate in turn the skewed Student-t distribution26.

Taking into account the aggregate results across the four tests we can 
summarize the comparisons at α = 95% as in the Figure 15:

Figure 15: Dominance relationship among probability distributions from aggregate 
results across the four tests at α = 95%

Each arrow head points to a model that dominates the model where the arrow 
originates. A two-headed arrow indicates two models that do not dominate 
each other.

No matter whether we take α = 99% or α = 95%, the Normal, Student-t, 
SKST and SGED distributions are dominated by other alternatives, spe-
cially JSU and SGT. We observe that JSU and SGT distributions seem to 
dominate all others, while not being dominated by each other. Accor-
ding to this dominance criterion the GHST distribution is judged again 
not to be appropriate for VaR estimation, since it is dominated by the 
rest of asymmetric distributions. The Normal distribution is also domi-
nated by all other distributions.

At α = 99% there is not a clear dominance ordering between volatility 
specifications. For α = 95% the FGARCH specification seems to domi-
nate but, once again, differences are not as clear as when comparing 
probability distributions.

26.  Even though p-dominance is not transitive it seems safe to focus on the models that tend to be p-dominant.
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A preference for APARCH and FGARCH models against standard GARCH 
and GJRGARCH has been a constant throughout our analysis up to this 
point. So, a robust conclusion is the need to incorporate a leverage 
effect in volatility and, possibly more important, the convenience to 
model standard deviations, rather than variances. The preference for 
asymmetric probability distributions in Table 20 is also consistent with 
results in Table 19 when comparing p-values of the test statistics. Both 
analyses are based on the same information, but they use it in a very 
different fashion. Nothing guarantees that the conclusions on the pre-
ferred probability distributions should be the same in both analyses. On 
the contrary, this coincidence should be seen as a proof of the robust-
ness of such preference.

2.7.4.	 Model Confidence Sets

We calculate the values of the AlTick loss function using percent returns 
for different models and assets27. With a few exceptions, including a 
leverage effect in volatility reduces the loss function with independence 
of the assumption on the probability distribution of innovations. There 
is also a noticeable reduction in the value of the loss function when we 
move from symmetric to asymmetric distributions. Bold figures in each 
column show the VaR model that achieves the lowest value of the loss 
function for each asset. It is striking that the probability distributions 
that perform well according to other criteria do not do well according to 
the criterion of minimizing the loss function28. Something similar hap-
pens with the APARCH model. This suggests that loss functions should 
not be used by themselves. Different loss functions should be expected 
to yield different results, and there are not clear criteria to prefer one 
function versus another. Besides, we cannot say anything about whether 
differences are statistically significant and, sometimes, they are small. 
As we have done with the results of backtesting, we prefer to embed the 
evaluation of the AlTick loss function into a more complete approach to 
model selection that can provide us with some robust evidence on the 
performance of alternative VaR models.

27.  These values are available from the author upon request.
28.  In 5 cases, the minimum loss for each asset is achieved by a SGED and the Normal distributions, in 4 
cases by SGT, in 3 cases by the GHST distribution and in 1 case by JSU and SKST. The FGARCH model achieves 
the minimum loss in 12 cases, the GARCH in 3 cases, APARCH and the GJRGARCH model in 2 cases.
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The availability of several model specifications being able to adequa-
tely describe the unobserved data generating process (DGP) opens 
the question of selecting the ’best fitting model’ according to a given 
optimality criterion. Recently, significant effort has been placed on 
developing testing procedures being able to deliver the ’best fitting’ 
models among a set of alternatives. One of the first proposals was 
Diebold & Mariano (1995), but it is not applicable when the forecasts 
come from nested models or when the forecasts are calculated from 
semiparametric or non- parametric methods (Giacomini & Komunjer, 
2005). This has been overcome by the Reality Check (RC) approach 
of White (2000), the Stepwise Multiple Testing procedure of Romano 
and Wolf (2005), the Superior Predictive Ability (SPA) test of Han-
sen and Lunde (2005), the Conditional test of Giacomini and White 
(2006), and the Model Confidence Set (MCS) procedure developed by 
Hansen, Lunde and Nason (2011). All these approaches are relevant 
from an empirical point of view, especially when the set of compe-
ting alternatives is large.

We implement the Model Confidence Set (MCS) procedure developed 
by Hansen, Lunde and Nason (2011) to discriminate among models. The 
MCS is a general approach to model selection that it does not assume 
knowledge of the correct specification. Furthermore, it does not require 
that the “true” model must be available as one of the competing models. 
This approach considers that all models have the same possibility of 
being correct and it compares them with each other. Another advantage 
of MCS is that it does not discard a model unless it is found to be signi-
ficantly inferior relative to other models29. It is an appealing method to 
use when comparing a set of forecasting models because in practice it 
often cannot be ruled out that two or more competing models are equa-
lly good, being then members of the Set of Superior Models (SSM). In 
this sense, the MCS approach may be preferred over methods that search 
for a single model to be selected as the “best model”.

The MCS procedure consists of a sequence of tests to construct the ’Set 
of Superior Models’ (SSM). The MCS is a sequential testing procedure 
that eliminates at each step the worst model, until the hypothesis of 

29.  In this respect it is clearly different from the two-stage approach to model selection we described at 
the beginning of this Section.



Sample Size, Skewness and Leverage Effects in Value at Risk and Expected Shortfall Estimation

105

Equal Predictive Ability (EPA) is not rejected for any of the models in 
the current SSM. On the other hand, each element in the SSM is cha-
racterized as having better predictive ability than models not in the set. 
The SSM has an interpretation similar to a confidence interval for a 
parameter in the sense that, with a given level of confidence, the SSM 
contains the best model. The EPA test statistic is evaluated under a gi-
ven loss function, so that it is possible to test models on various aspects 
depending on the chosen loss function. The possibility of user supplied 
loss functions provides enough flexibility to the procedure that can be 
used to test competing models with respect to different dimensions. This 
is in common with Diebold & Mariano (1995), although we are here 
somewhat more specific in comparing whether the number and size of 
VaR violations are different across models. We apply the EPA tests using 
the AlTick loss function, not just the difference between observed and 
predicted returns, but results with other functions might be different.

Formally, the loss function 
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Section. 
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bootstrapped variances by a block-bootstrap procedure. The block-bootstrap is the most general method 
to improve the accuracy of bootstrap for time series data. By dividing the data into several blocks, it can 
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series (1260 data observations) into overlapping blocks of length k. The accuracy of the block- bootstrap 
is sensitive to the choice of block length, and the optimal block length depends on the sample size, the 
data generating process, and the statistic considered30. The block length ! is usually estimated as the 
maximum number of significant parameters obtained by fitting an AR(p) process to all the !!"  terms. 
Since financial returns exhibit little linear autocorrelation, an AR(1) is enough to capture the dependence 
structure, so that we take ! = 1 and resample individual observations. Using a block length of 2 would 
not change significantly the characterization of the MCS. 
 
As discussed in Hansen et al. (2011) the EPA null hypothesis maps naturally into the statistic, 
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Since the asymptotic distributions of this test statistic is nonstandard, the relevant distribution under the 
null hypothesis needs to be estimated using a bootstrap procedure similar to that used to estimate 
!"#(!!"). 
 
Table 21 reports the frequency by which each probability distribution and each volatility specification 
enter into the Superior Set of Models for each asset using the AlTick loss function31. Tests are performed 
at the 90% confidence level, using a block-bootstrap procedure of 10000 resamples with a block length of 
1. The table shows that for some assets, like NASDAQ 100, FTSE 100, EUR/SD and JPY/USD, the SSM 
includes a variety of distributions and volatility specifications. That indicates that the one-step ahead 1% 
VaR forecasting performance of the competing combinations of probability distribution and volatility 
specification is relatively similar, suggesting that for these assets the use of simple models for VaR 
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VaR forecasting performance of the competing combinations of probability distribution and volatility 
specification is relatively similar, suggesting that for these assets the use of simple models for VaR 

                                                        
30 See Goncalves and White (2004, 2005), Künsch (1989), Liu and Singh (1992), and Politis and Romano (1994). Details about 
the implemented bootstrap procedure can be found in White (2000), Kilian (1999), Clark and McCracken (2001), Hansen et al. 
(2003), Hansen and Lunde (2005), Hansen et al. (2011) and Bernardi et al. (2016). 
 
31 We believe that the opportunity cost of overestimating VaR is non-trivial. The AlTick loss function not only penalizes 
underestimation but also risk overestimation, because of the excess capital retained, and therefore we prefer it over other loss 
functions, such as those proposed by Lopez (1998, 1999) and Sarma et al. (2003) which only penalize risk underestimation. 
However, it would be worthwhile to explore other loss functions that might focus on different characteristics of VaR forecasts. 
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variances by a block-bootstrap procedure. The block-bootstrap is the 
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we divide the full time series (1260 data observations) into overlapping 
blocks of length k. The accuracy of the block- bootstrap is sensitive to 
the choice of block length, and the optimal block length depends on the 
sample size, the data generating process, and the statistic considered30. 
The block length p is usually estimated as the maximum number of 
significant parameters obtained by fitting an AR(p) process to all the 
dij terms. Since financial returns exhibit little linear autocorrelation, an 
AR(1) is enough to capture the dependence structure, so that we take 
p = 1 and resample individual observations. Using a block length of 2 
would not change significantly the characterization of the MCS.

As discussed in Hansen et al. (2011) the EPA null hypothesis maps natu-
rally into the statistic,
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!!!  measures the relative sample loss between the i-th and j-th models, with  
!"#(!!") is a bootstrapped estimate of !"#(!!"). Following Hansen et al. (2011) we calculate the 
bootstrapped variances by a block-bootstrap procedure. The block-bootstrap is the most general method 
to improve the accuracy of bootstrap for time series data. By dividing the data into several blocks, it can 
preserve the original time series dependency structure within a block. To that end, we divide the full time 
series (1260 data observations) into overlapping blocks of length k. The accuracy of the block- bootstrap 
is sensitive to the choice of block length, and the optimal block length depends on the sample size, the 
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maximum number of significant parameters obtained by fitting an AR(p) process to all the !!"  terms. 
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Since the asymptotic distributions of this test statistic is nonstandard, the relevant distribution under the 
null hypothesis needs to be estimated using a bootstrap procedure similar to that used to estimate 
!"#(!!"). 
 
Table 21 reports the frequency by which each probability distribution and each volatility specification 
enter into the Superior Set of Models for each asset using the AlTick loss function31. Tests are performed 
at the 90% confidence level, using a block-bootstrap procedure of 10000 resamples with a block length of 
1. The table shows that for some assets, like NASDAQ 100, FTSE 100, EUR/SD and JPY/USD, the SSM 
includes a variety of distributions and volatility specifications. That indicates that the one-step ahead 1% 
VaR forecasting performance of the competing combinations of probability distribution and volatility 
specification is relatively similar, suggesting that for these assets the use of simple models for VaR 

                                                        
30 See Goncalves and White (2004, 2005), Künsch (1989), Liu and Singh (1992), and Politis and Romano (1994). Details about 
the implemented bootstrap procedure can be found in White (2000), Kilian (1999), Clark and McCracken (2001), Hansen et al. 
(2003), Hansen and Lunde (2005), Hansen et al. (2011) and Bernardi et al. (2016). 
 
31 We believe that the opportunity cost of overestimating VaR is non-trivial. The AlTick loss function not only penalizes 
underestimation but also risk overestimation, because of the excess capital retained, and therefore we prefer it over other loss 
functions, such as those proposed by Lopez (1998, 1999) and Sarma et al. (2003) which only penalize risk underestimation. 
However, it would be worthwhile to explore other loss functions that might focus on different characteristics of VaR forecasts. 
 

30.  See Goncalves and White (2004, 2005), Künsch (1989), Liu and Singh (1992), and Politis and Romano 
(1994). Details about the implemented bootstrap procedure can be found in White (2000), Kilian (1999), 
Clark and McCracken (2001), Hansen et al. (2003), Hansen and Lunde (2005), Hansen et al. (2011) and 
Bernardi et al. (2016).
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Since the asymptotic distributions of this test statistic is nonstandard, 
the relevant distribution under the null hypothesis needs to be esti-
mated using a bootstrap procedure similar to that used to estimate 
var(dij).

Table 21 reports the frequency by which each probability distribution 
and each volatility specification enter into the Superior Set of Models 
for each asset using the AlTick loss function31. Tests are performed at 
the 90% confidence level, using a block-bootstrap procedure of 10000 
resamples with a block length of 1. The table shows that for some 
assets, like NASDAQ 100, FTSE 100, EUR/SD and JPY/USD, the SSM 
includes a variety of distributions and volatility specifications. That 
indicates that the one-step ahead 1% VaR forecasting performance of 
the competing combinations of probability distribution and volatility 
specification is relatively similar, suggesting that for these assets the 
use of simple models for VaR forecasting may be justified.

The SGT, JSU, SGED and GHST distributions are the ones that enter 
most often into the MCS of the set of assets considered. Among the 
volatility models, FGARCH and APARCH seem to describe quite well 
the behavior of financial time series, although the symmetric GARCH 
also enters into the MCS quite often. Concerning the distribution spe-
cifications, we observe that the MCS confirms the common finding that 
the Normal distribution provides a poor description of the behavior of 
financial time series. Under the AlTick loss, the skewed Generalized-t 
and skewed Generalized Error distributions perform better than the Ge-
neralized Hyperbolic skew Student-t. Definitely, the Normal, Student-t 
and skewed Student-t distributions do not seem to be appropriate for 
VaR forecasting, at least for the wide set of financial assets considered 
in this chapter.

31.  We believe that the opportunity cost of overestimating VaR is non-trivial. The AlTick loss function 
not only penalizes underestimation but also risk overestimation, because of the excess capital retained, and 
therefore we prefer it over other loss functions, such as those proposed by Lopez (1998, 1999) and Sarma et 
al. (2003) which only penalize risk underestimation. However, it would be worthwhile to explore other loss 
functions that might focus on different characteristics of VaR forecasts.
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Table 21: Number of times that each probability distribution and volatility 
model enter into the Superior Set of models for each asset

Bold figures in the last column of the lower panel are aggregates for each proba-
bility distribution or volatility model. Bold figures in the last row of each panel 
display aggregates for each asset.

AlTick IBEX NASDAQ FTSE NIKKEI IBM SAN AXA BP IRS GER 
BOND

Models

GARCH 0 0 0 0 1 0 0 0 1 2
GJRGARCH 0 2 2 1 0 0 0 0 0 0
APARCH 2 5 5 0 0 0 0 2 0 0
FGARCH 3 4 3 2 0 1 1 0 0 3

Distributions
N 0 0 0 0 0 0 0 1 0 0
ST 0 1 0 0 0 0 0 0 0 0
SKST 0 2 2 0 0 0 0 0 0 0
SGED 2 2 2 2 1 0 1 1 0 1
JSU 0 2 3 0 0 1 0 0 0 2
SGT 2 3 3 1 0 0 0 0 1 1
GHST 1 1 0 0 0 0 0 0 0 1

Total Number 5 11 10 3 1 1 1 2 1 5

AlTick US 
BOND BRENT GAS GOLD SILVER EUR/

USD
GBP/
USD

JPY/
USD

AUD/
USD TOTAL

Models
GARCH 6 0 0 1 4 2 0 3 0 20
GJRGARCH 0 0 0 0 1 2 1 0 0 9
APARCH 0 0 0 0 0 2 0 4 2 22
FGARCH 1 1 1 0 1 6 0 4 1 32

Distributions
N 0 1 1 0 0 0 1 0 2 6
ST 1 0 0 0 0 2 0 3 1 8
SKST 1 0 0 0 1 1 0 0 0 7
SGED 1 0 0 0 0 1 0 3 0 17
JSU 1 0 0 0 2 1 0 0 0 12
SGT 1 0 0 0 1 4 0 3 0 20
GHST 2 0 0 1 2 3 0 2 0 13
Total Number 7 1 1 1 6 12 1 11 3
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2.8.	Conclusions

This chapter extends previous work on the forecasting performance of 
alternative VaR models by considering four volatility specifications: 
GARCH, GJR-GARCH, APARCH and FGARCH and a set of asymmetric 
probability distributions: skewed Student-t, skewed Generalized Error, 
unbounded Johnson, skewed Generalized-t and Generalized Hyperbolic 
skew Student-t distributions, some of them being relatively new to the 
financial literature. Standard symmetric distributions and GARCH mo-
dels without leverage are also used as a benchmark. Our sample of daily 
data for assets of different nature for the January 2000-December 2015 
period covers the recent financial crisis of 2007-2009.

Two clear results refer to issues that have been analyzed in previous re-
search by a number of authors: i) VaR models that assume asymmetric 
probability distributions for return innovations, like the skewed Student-t 
distribution, skewed Generalized Error distribution, Johnson SU distri-
bution, and skewed Generalized-t distribution achieve better VaR per-
formance than models with symmetric distributions, ii) volatility models 
with leverage, like APARCH and FGARCH, show a better VaR performance 
than more standard GARCH and GJR-GARCH volatility specifications.

Our analysis highlights other important issues. A third result is that the 
shape and the skew of the assumed probability distribution for innova-
tions are even more important for the performance of a Value at Risk mo-
del than including a leverage effect in volatility. This corroborates results 
by other authors (Lopez and Walter, 2000, Angelidis and Degiannakis, 
2006 and Braione and Scholtes, 2016). We provide a thorough analysis of 
this issue by showing that the result holds for the wide set of assets we 
have considered: i) the frequency of rejections of VaR tests in models that 
differ in their volatility specification is similar, while rejection frequen-
cies among models with the same volatility specification but a different 
probability distribution for the innovations can differ very significantly, 
ii) changing the probability distribution in a VaR model affects the p-
value of the statistic for VaR tests by a larger amount than changing the 
volatility specification, iii) the dominance criterion we have introduced in 
this chapter establishes a clear ranking between models differing in their 
probability distribution, while the distinction between models that differ 
in their volatility specification is much less clear.
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A fourth result deals with the fact that our estimates suggest that for 
a number of financial assets the true, unobserved volatility dynamics 
should not be specified in terms of the squared conditional standard 
deviation. Hence, models specified for the conditional variance are pro-
ne to produce biased results. Dealing with the power of the conditional 
standard deviation as a free parameter is an important feature of the 
APARCH/FGARCH volatility specifications which explains their better 
performance in validation tests of VaR forecasts.

Fifth, our analysis suggests that, as expected, a good fit of the moments 
of the distribution of returns usually leads to a good VaR performan-
ce. The MAE calculated over estimates for the four first moments se-
lects the combination of a skewed Generalized Error distribution and an 
APARCH/FGARCH volatility specification as the best model to reprodu-
ce the skewness and kurtosis in asset returns.

According to VaR performance, switching to a Johnson SU or a skewed 
Generalized-t distribution tends to increase the p-value of VaR validation 
tests. In terms of the dominance criterion among VaR models we have 
introduced in this chapter, the unbounded Johnson and skewed Generali-
zed-t dominate other asymmetric distributions like the skewed Student-t, 
the Generalized Hyperbolic skew Student-t and the skewed Generalized 
error distribution, as well as the symmetric distributions like Student-t 
and Normal. The skewed Generalized-t and skewed Generalized Error dis-
tributions perform better than the other distributions in terms of the Mo-
del Confidence Set procedure. According to all these analyses, FGARCH 
seems the preferred model to capture the volatility of financial time se-
ries, with APARCH as a close second. In summary, the combination of 
APARCH or FGARCH volatility with a skewed Generalized Error, skewed 
Generalized-t or unbounded Johnson SU distributions seem to be have 
the best VaR performance for a wide array of assets of different nature.

This evidence has been obtained trying to get broad and robust con-
clusions over the set of assets considered. But it could be the case that 
alternative VaR models provided different VaR performance for distinct 
asset classes. We have just a few assets of each class, which may explain 
the disparate results that are likely to arise if we repeat the analysis in the 
chapter by asset classes in our sample. But this is clearly an important 
issue that deserves being considered for further research.
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CHAPTER 3. TESTING ES ESTIMATION MODELS: AN 
EXTREME VALUE THEORY APPROACH

3.1. Introduction

The Basel Committee on Banking Supervision (BIS) has recently chose 
Expected Shortfall (ES) as the market risk measure to be used for ban-
king regulation purposes, replacing Value at Risk (VaR). The change is 
motivated by the superior properties of ES as a measure of risk, since it 
is based on information on the whole tail of the distribution of returns. 
The main drawback with the use of ES for risk regulation is the unavai-
lability of simple tools for evaluation of ES forecasts (i.e. backtesting ES). 
In fact, the Basel Committee backed down on requiring the backtesting 
of ES. A debate started by Gneiting led many to believe that ES could 
not be backtested because it was not “elicitable”. That point was settled 
recently by Fissler, Ziegel and Gneiting (2015) and by Acerbi and Szekely 
(2014), who demonstrated that lack of elicitability is not an impediment to 
backtesting ES. The latest Basel consultative document of January 2016, 
however, proposed to calculate risk and capital using ES, but to conduct 
backtesting only on VaR. VaR backtests are applied comparing whether 
the observed percentage of outcomes covered by the risk measure is 
consistent with the intended level of coverage. However, it is important 
that the capital reserve indicated by the VaR calculation could be tested, 
and the hypothesis that the level of reserves is adequate could be subject 
to a valid statistical test.

There is not much work evaluating and comparing the performance of ES 
forecasting models using recently introduced ES backtesting. Alexander 
and Sheedy (2008) develop a two-stage methodology for conducting stress 
tests whereby an initial shock event is linked to the probability of its oc-
currence. Working with three major currency pairs they found that results 
compared favorably with the traditional historical scenario stress testing 
approach. Jalal and Rockinger (2008) use a circular block bootstrap to take 
adequately into account the possible dependency among exceedances. 
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Applying the two-step procedure of McNeil and Frey (2000), they found 
that ES forecasts captured actual shortfalls satisfactorily. Ergün and Jun 
(2010) show that the Autoregressive Conditional Density (ARCD) model 
of Hansen (1994) with a time-varying conditional skewness parameter 
seems to provide more ES forecasts, beating forecasts from other GARCH-
based models as well as from the extreme value theory (EVT) approach. 
Wong et al. (2012) compare ES forecasting models using the saddlepoint 
backtest proposed by Wong (2008). Righi and Ceretta (2015) evaluate un-
conditional, conditional and quantile/expectile regression-based models 
for ES forecasting using the ES backtest proposed by McNeil and Frey 
(2000) and a proposed test based on the standard deviation of returns 
beyond VaR. Clift, Costanzino and Curran (2016) apply three approaches 
recently proposed in the literature for backtesting ES by Wong (2008), 
Acerbi & Szekely (2014) and Costanzino & Curran (2015), but they only 
consider a GARCH volatility specification and a Normal distribution for 
ES forecasting. In these papers there is some indication on the benefits of 
using asymmetric probability distributions and EVT for ES forecasting32.

We estimate VaR and ES at 1-day and 10-day horizons using standard 
conditional models as well as an EVT approach. For the latter, we use 
the two-step algorithm proposed by McNeil and Frey (2000) that fits a 
Generalized Pareto distribution to the extreme values of the standardi-
zed residuals generated by a given conditional volatility model. In both 
analysis we use asymmetric probability distributions for return innova-
tions that are relatively new to the financial literature, and we analy-
ze the accuracy of our estimates before and during the 2008 financial 
crisis using daily data. We take into account volatility clustering and 
leverage effects in return volatility by using the APARCH model (Ding, 
Granger and Engle, 1993) under different probability distributions for 
the standardized innovations: Gaussian, Student-t, skewed Student-t 
[Fernandez and Steel (1998)], skewed Generalized Error [Fernandez and 
Steel (1998)] and Johnson SU [Johnson (1949)]. Then, we compare the 
out-of-sample 1-day and 10-day ahead ES forecast performance of all 
these models. For ES evaluation, we use the most recent ES backtesting 
proposals, which overcome the limitations of previous tests [McNeil & 

32.  Other studies have VaR as their primary measure of interest, leaving ES to a second level, such as Zhou 
(2012), Degiannakis, Floros and Dent (2013) and Tolikas (2014), where no extensive focus is placed on ES 
forecasting patterns. 
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Frey (2000), Berkowitz (2001), Kerkhof and Melenberg (2004) and Wong 
(2008)]. These are the test of Righi & Ceretta (2013), the first two tests 
of Acerbi & Szekely (2014) that are straightforward but require simula-
tion analysis (as the Righi & Ceretta test) to compute critical values and 
p-values, the test of Graham & Pál (2014) which is an extension of the 
Lugannani-Rice approach of Wong (2008), the quantile- space uncon-
ditional coverage test of Costanzino & Curran (2015) for the family of 
Spectral Risk Measures of which ES is a member, and the conditional 
test of Du & Escanciano (2016). The last two tests can be thought of as 
the continuous limit of the Emmer, Kratz & Tasche (2015) idea in that 
they are joint tests of a continuum of VaR levels.

EVT has rarely been implemented beyond a one-day horizon when fo-
recasting the ES of financial assets, even though there are several eco-
nomic and practical reasons for computing long-term risk measures. 
Risk horizons longer than one day are particularly important for risk 
liquidity management, for long term strategic asset allocation as well as 
to compute capital requirements. Besides, the Basel Committee obliges 
banks to compute their level of risk over a 10-day horizon. The difficul-
ty resides in getting enough homogeneous data on 10-day returns over 
non-overlapping periods. That explains the extended use of the scaling 
law, whose use is also proposed in the Basel Committee supervision do-
cuments. We get around this limitation by using Filtered Historical Si-
mulation (FHS) to obtain time series of 10-day returns and we estimate 
10-day ES by applying the same methodologies as for 1-day ahead ES 
forecasting.

To sum up, this work contributes to the literature in four ways. First, 
we compare the performance of the standard parametric approach with 
two alternatives to ES forecasting that take into account volatility clus-
tering and asymmetric returns: EVT and the semi- parametric Filtered 
Historical Simulation. Second, we compare the results obtained under 
asymmetric probability distributions for return innovations with results 
under Normal and Student-t distributions. Third, we use the APARCH 
volatility specification because of its greater flexibility to represent the 
dynamics of conditional volatility (Garcia-Jorcano and Novales, 2017). 
Fourth, we forecast VaR and ES over a 10-day horizon as in Basel capital 
requirements and test ES forecasting models at this horizon, an analysis 
that has seldom been considered in the financial literature. Finally, we 
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examine the accuracy of risk models for ES forecasting during pre-crisis 
and crisis periods as well as under different significance levels. To the 
best of our knowledge, this is the first time that a systematic test of ES 
forecasting models is done considering a variety of probability distribu-
tions and two alternatives to the standard parametric approach, like EVT 
and the semi-parametric FHS.

3.2.	 Review of Literature

The quantiles of the distribution of returns (VaR) can be estimated by 
extreme value theory (EVT), which models the tails of the distribution of 
returns without making any specific assumption concerning the center 
of the distribution (Rocco, 2014). The tail index parameter in EVT can 
be estimated nonparametrically without assuming any particular model 
for the tail. There are many estimators that can be used to accomplish 
this task, such as Hill estimator (Hill, 1975) and Pickands estimator (Pic-
kands, 1975).

For the estimation of the tail index parameters in EVT there are also two 
parametric approaches based on classical methods such as maximum 
likelihood. The first parametric approach is Block Maxima (BM) based 
on the Generalized Extreme Value (GEV), which divides the sample into 
m subsamples of n observations each and picks the maximum of each 
subsample; see for example Longin (2000), Diebold, Schuermann and 
Stroughair (2000). The second EVT parametric approach is the Peak Over 
Threshold (POT) based on the Generalized Pareto Distribution, according 
to which any observations that exceed a given high threshold, u, are 
modeled separately from non-extreme observations. McNeil and Frey 
(2000) show that the EVT method based on the Generalized Pareto dis-
tribution yields quantile estimates that are more stable than those from 
the Hill estimator. When working with threshold exceedances the choice 
of cut-off between the central part of the distribution and the tails may 
have severe consequences for risk estimates. If the threshold is chosen 
too low VaR forecasts will be biased and the asymptotic limit theorems 
will not apply. If the threshold is too large VaR forecasts will have large 
standard deviations due to the limited number of sample observations 
over the threshold.
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An alternative to the unconditional approach is to calculate the condi-
tional quantile. Under a parametric approach, the usual option to esti-
mate the conditional quantile is assuming a particular distribution for 
return innovations. The most popular parametric distribution for stan-
dardized returns is Gaussian and Student-t distributions, and the Skewed 
Student-t distribution of Hansen (1994). An alternative leptokurtic and 
asymmetric distribution that has been considered in this context is 
the Skewed-Generalized-t (SGT) distribution proposed by Theodossiou 
(1998). The SGT distribution has the attractive feature of encompassing 
most of the distributions that are usually assumed for standardized re-
turns, such as Gaussian, Generalized Error Distribution (GED), Student-t 
and Skewed Student-t distributions, for example. Recently, Ergen (2015) 
has considered the Skewed-t distribution proposed by Azzalini and Ca-
pitanio (2003) and Aas and Haff (2006) propose the use of the Gene-
ralized Hyperbolic Skew Student-t distribution for unconditional and 
conditional VaR forecasting.

Another possibility is to estimate the conditional quantile using the EVT 
approach. Danielsson and de Vries (2000) and McNeil and Frey (2000) 
suggest estimating the quantiles of return innovations by applying EVT 
to the standardized returns, which are i.i.d. if the conditional mean and 
variance are specified correctly. Chan and Gray (2006) introduce a des-
cription of the conditional EVT and its application to the forecasting of 
the VaR of daily electricity prices. McNeil and Frey (2000) propose fil-
tering returns by estimating a GARCH model, then applying EVT to the 
tails of the empirical distribution of innovations while bootstrapping to 
the central part of the distribution. They verify that the General Pareto 
distribution of EVT results in better estimates for ES than the Gaussian 
model. Jalal and Rockinger (2008) show that this procedure appears to 
perform a remarkable job when combined with a well-chosen threshold 
estimation, such as that in Gonzalo and Olmo (2004).

Following non-parametric methods, innovation quantiles can be estima-
ted using bootstrapping, which does not need to assume any particular 
probability distribution (Ruiz and Pascual, 2002). In particular, Baro�-
ne-Adesi, Giannopoulus and Vosper (1999, 2002) propose a bootstrap 
method known as filtered historical simulation (FHS), which is based on 
the idea of using random draws with replacement from the standardi-
zed residuals. Bootstrap procedures have the advantage that they allow 
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for the construction of confidence intervals for VaR estimates. Pascual, 
Ruiz and Romo (2006) propose a bootstrap procedure that allows for the 
incorporation of parameter uncertainty. Kourouma et al. (2011) compare 
unconditional and conditional historical simulation and EVT in VaR 
and ES forecasting. They conclude that conditional EVT model is more 
accurate and reliable for VaR forecasting, according to the rate of viola-
tions and Wald, Kupiec and Christoffersen tests, and for ES forecasting, 
according to an ES test proposed by them that is based on the average 
difference between realized returns and the predicted ES.

As regards ES, in spite of its advantages as a measure of risk it is still 
less used than VaR. However, the Basel committee (2016) has recently 
placed a stronger emphasis on ES and backtesting ES is clearly in the 
future agenda for capital requirements at financial institutions. The pro-
blem is that backtesting ES is much harder than backtesting VaR.

Recently, some ES backtesting procedures have been developed, like the 
residual approach introduced by McNeil and Frey (2000), the censored 
Gaussian approach proposed by Berkowitz (2001), the functional delta 
approach of Kerkhof and Melenberg (2004), and the saddlepoint techni-
que introduced by Wong (2008). While Berkowitz’s censored Gaussian 
approach and Kerkhof & Melenberg’s functional delta method rely on 
large samples for convergence to the required limiting distributions, the 
saddlepoint techniques proposed by Wong are accurate and have re-
asonable test power even if the sample size is small. The saddlepoint 
technique makes use of a small sample asymptotic method that involves 
higher order moments of the underlying distribution and is able to ap-
proximate to a very high degree of accuracy the required tail probability 
even for very small sample sizes. But this test has a few disadvantages, 
such as the Gaussian distribution assumption and the full distribution 
conditional standard deviation that is used as the dispersion measure.

However, these approaches present some drawbacks. The backtest of 
McNeil and Frey (2000), Berkowitz (2001) and Kerkhof and Melenberg 
(2004) rely on asymptotic test statistics that might be inaccurate when 
the sample size is small, and this could penalize financial institutions 
because of an incorrect forecasting of ES. Further, these tests compute 
the required p-value based on the full sample size rather than conditio-
nal on the number of exceptions. The test proposed by Wong (2008) is 
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robust to these questions, making it possible to detect failure of a risk 
model based on just one or two exceptions before any more data is ob-
served. Nonetheless, the Wong (2008) backtest has some disadvantages, 
such as the Gaussian distribution assumption, and the use of the full 
distribution conditional standard deviation as a dispersion measure.

To overcome these limitations, Emmer, Kratz & Tasche (2015) propose 
a new ES backtest based on a simple linear approximation, in which 
the ES estimate is obtained as the average of quantiles at different VaR 
levels. The ES estimate is considered acceptable if all the VaR estima-
tes pass Kupiec test. Also, the test proposed by Righi & Ceretta (2013) 
verifies whether the average observed deviations from the ES for those 
returns below VaR is zero. In this test returns are standardized using the 
mean and standard deviation from the distribution of returns trunca-
ted to the left of VaR. Later, Acerbi & Szekely (2014) introduced three 
model-free, non-parametric backtesting methodologies for ES that are 
shown to be more powerful than the Basel VaR test. Graham & Pál 
(2014) generalized Wong’s result in a tractable and intuitive manner 
to allow for any VaR modeling, and therefore distributional, approach. 
Costanzino & Curran (2015) developed a methodology that can be used 
to backtest any spectral risk measure, including ES. It is based on the 
idea that ES is an average of a continuum of VaR levels. They introduce 
an unconditional ES backtest similar to the unconditional VaR backtest 
of Kupiec, to test whether the average cumulative violation is equal to 
α/2. Later, Du & Escanciano (2016) proposed backtesting for ES based on 
cumulative violations, which are the natural analogue of the commonly 
used conditional backtest for VaR, extending the results obtained by 
Costanzino & Curran (2015).

Several papers have considered a comparison between alternative ES 
forecasting models: Kourouma et al. (2011) introduce a validation test 
for ES models and use it to compare unconditional and conditional ES 
forecasting models at 1-, 5- and 10-day horizons. As conditional model 
they specify a GJR-GARCH under a Normal distribution for return in-
novations. Wong et al. (2012) compare conditional models with GARCH 
and APARCH volatility specifications and Normal, Student-t, skew Stu-
dent-t and EVT combined with a Normal distribution using the ES va-
lidation tests introduced in Wong (2008, 2010). Righi & Ceretta (2015) 
analyze a much richer variety of alternative models and methods for ES 
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forecasting using the McNeil & Frey (2000) test and the Righi & Ceretta 
(2015) test. Clift et al. (2016) consider the Wong test (2010), Costanzino 
& Curran test (2015) and Acerbi & Szekely tests (2014) but use simple 
specifications as illustration: a constant volatility model and a GARCH 
model under Normality.

We use five different approaches for evaluation of ES estimates, with six 
methods overall. The test of Righi & Ceretta (2015) and the first two tests 
of Acerbi & Szekely (2014) are straightforward, but require simulations, 
the test of Graham & Pál (2014), which is an extension of the Lugan-
nani-Rice approach of Wong (2010), the quantile-space unconditional 
coverage test of Costanzino & Curran (2015) for the family of Spectral 
Risk Measures, of which ES is a member and, finally, the conditional test 
of Du & Escanciano (2016). The last two tests can be thought of as the 
continuous limit of the Emmer, Kratz & Tasche (2015) idea in that it is a 
joint test of a continuum of VaR levels.

3.3.	 Background

3.3.1.	  Standard Risk Measures

Value at Risk (VaR) is a simple risk measure that tells us what loss will 
be exceeded only a small percentage of times in the next k trading days 
(100α%). Thus, given the log-return rt+k of a portfolio in period t+k, VaR 
at a level α is defined as 
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!"#!!!!  definition we have, Pr !!!! < (!"#!!!! − µμ!!!)/!!!! = ! , which amounts to !((!"#!!!! −
µμ!!!)/!!!!) = !, or 
 

!"#!!!! = µμ!!! + !!!!!!!(!) (6) 

where ! denotes the probability distribution function of return innovations !!. Given the drawbacks of 
VaR as a risk measure, it is convenient to compute the ES, which accounts for the magnitude of large 
losses as well as their occurring probability. The ES is defined from VaR as 
!"!!!! = !!!! !!!! !!!! < !"#!!!!  and tells us the expected value of the loss !-days ahead, conditional 
on it being worse than the VaR. As VaR is usually negative for low ! values, the expectation of returns 
below VaR will also be negative. For the 1-day ahead ES we have!"!!!! = !!!! !!!! !!!! < !"#!!!! =
µμ!!! +   !!!!!!!! !!!! !!!! < (!"#!!!! − µμ!!!)/!!!! . Finally, using (6) we get, 
 

!"!!!! = µμ!!! +   !!!!!!!! !!!! !!!! < !!!(!)  (7) 

 
If we assume the existence of an absolutely continuous cdf !, ES is defined as 
 

!!!! !!!! !!!! < !!!(!) =
1
! !!! ! !"

!

!
=
1
! !" ! !"

!!!(!)

!!
 

 
 

3.3.2.  Estimating risk: Conditional models for the full distribution 
 
We now define VaR and ES in conditional models.  For that purpose, we consider that R is a stationary 
process with a fully parametric location-scale specification based on the expectation, dispersion and 
random components: !! = µμ! +   !!!!, where for period t, !! is the return of an asset, µμ! is the conditional 
mean (location),   !! the conditional standard deviation (scale) and !! represents a zero location and unit 
scale innovation white noise series, which can assume many probability distribution functions!. Under 
this specification, the risk measures become, 
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The SD measure in the last expression is the dispersion around the expected value truncated by the VaR. 
This will be considered for ES backtesting of Righi & Ceretta. 
 

3.3.3.  Estimating risk: Conditional models for extreme events 
 
The alternative approach is to consider only extreme events, precisely those captured by risk measures. In 
this regard, the Extreme Value Theory (EVT) is concerned with the distribution of the smallest order 
statistics and it considers only the tail of the distribution of returns. For further reference, see Longin 
(2005). Although EVT is interesting for risk modeling, the stylized facts make the iid assumption 
inappropriate for most financial data. To solve this issue, one should apply the EVT analysis to the 
filtered residuals !! of a previously estimated model, as proposed by Diebold, Schuermann and Stroughair 
(2000) and McNeil and Frey (2000). This is possible because under a correct model specification, the 
filtered residuals will be approximately iid, an assumption of EVT modeling. 
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to compute the ES, which accounts for the magnitude of large losses 
as well as their occurring probability. The ES is defined from VaR as 
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3.3.2.	  Estimating risk: Conditional models for the full distribution

We now define VaR and ES in conditional models. For that purpose, we 
consider that R is a stationary process with a fully parametric location-
scale specification based on the expectation, dispersion and random 
components: rt = µt + σt zt, where for period t, rt is the return of an 
asset, µt is the conditional mean (location), σt the conditional standard 
deviation (scale) and zt represents a zero location and unit scale innova-
tion white noise series, which can assume many probability distribution 
functions F. Under this specification, the risk measures become,
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The SD measure in the last expression is the dispersion around the expected value truncated by the VaR. 
This will be considered for ES backtesting of Righi & Ceretta. 
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The alternative approach is to consider only extreme events, precisely those captured by risk measures. In 
this regard, the Extreme Value Theory (EVT) is concerned with the distribution of the smallest order 
statistics and it considers only the tail of the distribution of returns. For further reference, see Longin 
(2005). Although EVT is interesting for risk modeling, the stylized facts make the iid assumption 
inappropriate for most financial data. To solve this issue, one should apply the EVT analysis to the 
filtered residuals !! of a previously estimated model, as proposed by Diebold, Schuermann and Stroughair 
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The SD measure in the last expression is the dispersion around the ex-
pected value truncated by the VaR. This will be considered for ES bac-
ktesting of Righi & Ceretta.

3.3.3.	  Estimating risk: Conditional models for extreme events

The alternative approach is to consider only extreme events, preci-
sely those captured by risk measures. In this regard, the Extreme Value 
Theory (EVT) is concerned with the distribution of the smallest order 
statistics and it considers only the tail of the distribution of returns. 
For further reference, see Longin (2005). Although EVT is interesting for 
risk modeling, the stylized facts make the iid assumption inappropriate 
for most financial data. To solve this issue, one should apply the EVT 
analysis to the filtered residuals zt of a previously estimated model, as 
proposed by Diebold, Schuermann and Stroughair (2000) and McNeil 
and Frey (2000). This is possible because under a correct model speci-
fication, the filtered residuals will be approximately iid, an assumption 
of EVT modeling.

Under the EVT approach, VaR and ES are modeled using the concept of 
threshold exceedance. The peaks-over-threshold (POT) models develo-
ped around this concept center on the analysis of the Generalized Pareto 
distribution, which may be understood as a limiting tail distribution for 
a wide variety of commonly studied continuous distributions. The POT 
is the typical approach used in finance. Under the iid assumption, let us 
consider the distribution function of excesses Y = u – Z over a high, fixed  
threshold 
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(1975) shows that the Generalized Pareto distribution (GPD) arises naturally as the limit distribution of 
the scaled excesses of identical and independently distributed (iid) random variables over high thresholds. 
We say that excesses from a given threshold follow a General Pareto distribution ! = ! − ! ∼ !"#(!, !) if
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1 − 1 +
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1 − exp −
!
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!"#!,! !  has support ! ≥ 0 if ! ≥ 0 and 0 ≤ ! ≤ −!/! if ! < 0 where ! > 0 is a scale parameter and 
! is the tail shape parameter, which is crucial because it governs the tail behavior of !"#!,! ! . The case 
! > 0 corresponds to heavy-tailed distributions whose tails decay like power functions, such as Pareto, 
Student-t, Cauchy, Burr, loggamma and Fréchet distributions.  In this case, the tail index parameter equal 
to 1/! corresponds to, for example, the degrees of freedom of the Student-t distribution. The case ! = 0 
corresponds to distributions like Normal, exponential, gamma and lognormal, whose tails essentially 
decay exponentially. The final group of distributions are short-tailed distributions (! < 0) with a finite 
right endpoint, such as the uniform and beta distributions. 
 
The implied assumption is that the tail of the underlying distribution begins at the threshold u. From our 
sample of ! data a random number !! will exceed this threshold. If we assume that the !! excesses over 
the threshold are iid with exact GPD distribution, Smith (1987)  has  shown  that  maximum  likelihood  
estimates  ! = !!  and  ! = !! of the GPD parameters ! and ! are consistent and asymptotically normal 
as !! → ∞, provided ! > −1/2. Under the weaker assumption that the excesses are iid from a !!(!) 
which is only approximately GPD he also obtains asymptotic normality results for ! and !. 
 
Consider now the following equality for points ! < ! in the left tail of !: 

 
! ! = ! ! −!! !−! ! ! = !(!)(1−!! !   −   ! ) 

 
If we estimate the first term on the right-hand side of the equation using the proportion of tail data !!/!, 
and if we estimate the second term by approximating the excess distribution with a generalized Pareto 
distribution fitted by maximum likelihood, we get the tail estimator  
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! − !
!

!!/!
 

 
It is very important to note that the distribution F of the conditional model and the distribution !"#!,!  for 
{!} over threshold ! are not linked. Thus, it is possible to use any conditional model to filter the data 
before applying EVT to !!. In our analysis we assume a variety of asymmetric distributions for ! that 
give rise to different conditional EVT estimates. Under the EVT approach, the risk measures are obtained, 
 

!"#!! = !! + !! ! +
!
! 1 −

!
!!/!

!!
 

                                                        
33 Notice that we focus on the lower tail of the data, and we have adapted all formulations accordingly. The choice of ! is 
subject to a trade-off: very high ! leads to an estimator with large variance, while low ! induces bias. The choice of ! is the 
most important implementation issue 
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 if		

33.  Notice that we focus on the lower tail of the data, and we have adapted all formulations accordingly. 
The choice of u is subject to a trade-off: very high u leads to an estimator with large variance, while low u 
induces bias. The choice of u is the most important implementation issue.
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- Pág. 125: Separar del texto y centrar (quitando el punto final) la siguiente ecuación  
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- Pág. 134: La Figure 19 no se comprende en tonalidades de color gris, sustituirla por la siguiente, 
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Summarizing, McNeil & Frey proceed as follows: In the first step, they filter the dependence in the time 
series of returns by computing the residual of a GARCH-type model, which should be iid if the GARCH-
type model correctly fits the data. In the second step, they model the extreme behavior of the residual 
using the tail approach explained above. Finally, in order to produce a VaR forecast of original returns, 
they trace back the steps by first producing the !-quantile forecast for the GARCH-type filtered residuals 
and transforming the !-quantile forecast for the original returns using the conditional forecast at the 
required horizon. 
 
It is worth emphasizing that the GARCH-EVT approach incorporates the two ingredients required for an 
accurate evaluation of the conditional VaR, i.e. a model for the dynamics of the first and second return 
moments, and an appropriate model for the conditional distribution of returns. An obvious improvement 
of this approach as compared to the unconditional EVT is that incorporates in VaR forecasting changes in 
expected return and volatility. For instance, if we assume a change in volatility over the recent period, the 
GARCH-EVT is able to incorporate this new feature in its VaR evaluation, whereas the unconditional 
EVT would remain stuck at the average level of volatility over the estimation sample. 
 
McNeil & Frey (2000) also perform a backtesting experiment in which they compare the performance of 
various methods to correctly reproduce the quantiles of several asset returns. They show that the 
GARCH-EVT performs much better than unconditional EVT, suggesting that the ability to capture 
changes in volatility is crucial for VaR computation. 
 

3.3.4.  Estimating risk: Filtered Historical Simulation 
 
The standard historical approach is often limited to the 1-day horizon because of the lack of enough 
historical data to use non-overlapping h-day returns. Using overlapping h-day returns would distort the 
tail behavior of the return distributions leading to significant error in VaR and ES forecasts at extreme 
quantiles. An alternative for VaR and ES forecastings at risk horizons longer than one-day is Filtered 
Historical Simulation (FHS). Barone-Adesi et al. (1998, 1999) extend the idea of volatility adjustment to 
multi-step historical simulation, using overlapping data in a way that does not create blunt tails for the h-
day portfolio return distribution. Their idea is to apply a statistical bootstrap to the residuals of a 
parametric dynamic model of returns, to simulate log returns on each day over the risk horizon. Typically, 
the model will incorporate a specification of the GARCH family for volatility dynamics. The filtering 
involved in the FHS approach allows for h-day return distributions to be generated from overlapping 
samples, since the bootstrap allows for increasing the number of observations used for building the h-day 
return distribution. 
 
FHS is in fact a hybrid method combining some attractive features of both historical and Monte Carlo 
VaR models. The advantages of FHS  approach are 1) it captures current market conditions by means of 
the volatility dynamics, 2) no assumptions need to be made on the distribution of the return innovations 
and 3) the method allows for the computation of any risk measure at any investment horizon of interest 
because we can generate as many h-day returns as we like. 
 
Suppose that at a time !, we want to simulate returns for the next ℎ days. We select {!!!!,∗ !!!!∗ , … , !!!!∗ } at  
random  with  replacement  (statistical  bootstrap)  from  the set of standardized innovations from our 
model {!!, !!, … , !!}  after filtering out APARCH and AR models. We use the APARCH model to 
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volatility over the recent period, the GARCH-EVT is able to incorporate 
this new feature in its VaR evaluation, whereas the unconditional EVT 
would remain stuck at the average level of volatility over the estimation 
sample.

McNeil & Frey (2000) also perform a backtesting experiment in which 
they compare the performance of various methods to correctly repro-
duce the quantiles of several asset returns. They show that the GARCH-
EVT performs much better than unconditional EVT, suggesting that the 
ability to capture changes in volatility is crucial for VaR computation.

3.3.4. Estimating risk: Filtered Historical Simulation

The standard historical approach is often limited to the 1-day horizon 
because of the lack of enough historical data to use non-overlapping 
h-day returns. Using overlapping h-day returns would distort the tail 
behavior of the return distributions leading to significant error in VaR 
and ES forecasts at extreme quantiles. An alternative for VaR and ES 
forecastings at risk horizons longer than one-day is Filtered Historical 
Simulation (FHS). Barone-Adesi et al. (1998, 1999) extend the idea of 
volatility adjustment to multi-step historical simulation, using overlap-
ping data in a way that does not create blunt tails for the h-day port-
folio return distribution. Their idea is to apply a statistical bootstrap to 
the residuals of a parametric dynamic model of returns, to simulate log 
returns on each day over the risk horizon. Typically, the model will in-
corporate a specification of the GARCH family for volatility dynamics. 
The filtering involved in the FHS approach allows for h-day return dis-
tributions to be generated from overlapping samples, since the bootstrap 
allows for increasing the number of observations used for building the 
h-day return distribution.

FHS is in fact a hybrid method combining some attractive features of 
both historical and Monte Carlo VaR models. The advantages of FHS 
approach are 1) it captures current market conditions by means of the 
volatility dynamics, 2) no assumptions need to be made on the dis-
tribution of the return innovations and 3) the method allows for the 
computation of any risk measure at any investment horizon of interest 
because we can generate as many h-day returns as we like.
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Suppose that at a time s, we want to simulate returns for the next h 
days. We select 
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Summarizing, McNeil & Frey proceed as follows: In the first step, they filter the dependence in the time 
series of returns by computing the residual of a GARCH-type model, which should be iid if the GARCH-
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and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
 
We use an expanding window to estimate the model, starting with the 2915 observations from the 
10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and apply the 
algorithm to generate ! = 5000 ℎ-day ahead return simulations from which we compute forecasts for 
VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample, 
12/5/2011-9/30/2016, obtaining daily forecasts of h-day ahead of the VaR, ES and SD risk measures. 
 
Following the McNeil & Frey (2000) proposal, under the EVT approach we estimate the ! and ! 
parameters by fitting the Generalized Pareto distribution (GPD) to the left tail of standardized return 
innovations. We generate ! = 5000 simulations for the h-day ahead return !!:!∗  using a combination of 
bootstrapping in-sample residuals from the fitted models (i.e., FHS) and GPD simulation. We apply the 
following algorithm, which was also proposed independently by Danielsson and de Vries (2000), 
 

(i) Use bootstrapping to randomly sample from the standardized innovations for each future period 
and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 
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and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
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and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 
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where ! is the indicator function that assumes value 1 if the ℎ-day return !!,!:!∗  is lower than VaR and 0 
otherwise. Thus, the ES is just the mean of the simulated returns below VaR. Finally, 
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and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
 
We use an expanding window to estimate the model, starting with the 2915 observations from the 
10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and apply the 
algorithm to generate ! = 5000 ℎ-day ahead return simulations from which we compute forecasts for 
VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample, 
12/5/2011-9/30/2016, obtaining daily forecasts of h-day ahead of the VaR, ES and SD risk measures. 
 
Following the McNeil & Frey (2000) proposal, under the EVT approach we estimate the ! and ! 
parameters by fitting the Generalized Pareto distribution (GPD) to the left tail of standardized return 
innovations. We generate ! = 5000 simulations for the h-day ahead return !!:!∗  using a combination of 
bootstrapping in-sample residuals from the fitted models (i.e., FHS) and GPD simulation. We apply the 
following algorithm, which was also proposed independently by Danielsson and de Vries (2000), 
 

(i) Use bootstrapping to randomly sample from the standardized innovations for each future period 
and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 
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simulate future returns for dates ! = ! + 1, ! + 2, . . . , ! + ℎ: 
 

!!∗ = (! + !! !!!!∗ − !!!!!!∗ )! + !! !!!!∗ !)!/!  (8) 
 

!!∗ = !!∗!!∗ (9) 
 

!!∗ = !! + !!!!!!∗ + !!∗ (10) 
 
The algorithm contains the following steps, 

(i) Select {!!!!,∗ !!!!∗ , … , !!!!∗ } drawing randomly with replacement from {!!, !!, … , !!}. 
(ii) Take as initial values the last estimates:  !!∗ = !!, !!∗ = !!, !!∗ = !!. 
(iii) Set up for ! = ! + 1, ! + 2, . . . , ! + ℎ, 

• Plug !!!!∗  and !!!!  ∗ in equation (8) to get !!∗. 
• Plug !!∗  (from step (i)) and !!∗  in equation (9) to get !!  ∗  . 
• Plug !!!!  ∗ and !!  ∗   in equation (10) to get !!  ∗. 
• Then the simulated log return over ℎ days (!!:!∗ ) is the sum !!!!∗ + !!!!∗ + ⋯+ !!!!∗  

(iv) Repeating this procedure ! times yields ! simulated ℎ-day returns,  !!,!:!∗ , ! = 1, 2, . . . , !. 
 
We compute ℎ-day ahead VaR and ES forecasts as, 
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where ! is the indicator function that assumes value 1 if the ℎ-day return !!,!:!∗  is lower than VaR and 0 
otherwise. Thus, the ES is just the mean of the simulated returns below VaR. Finally, 
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and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
 
We use an expanding window to estimate the model, starting with the 2915 observations from the 
10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and apply the 
algorithm to generate ! = 5000 ℎ-day ahead return simulations from which we compute forecasts for 
VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample, 
12/5/2011-9/30/2016, obtaining daily forecasts of h-day ahead of the VaR, ES and SD risk measures. 
 
Following the McNeil & Frey (2000) proposal, under the EVT approach we estimate the ! and ! 
parameters by fitting the Generalized Pareto distribution (GPD) to the left tail of standardized return 
innovations. We generate ! = 5000 simulations for the h-day ahead return !!:!∗  using a combination of 
bootstrapping in-sample residuals from the fitted models (i.e., FHS) and GPD simulation. We apply the 
following algorithm, which was also proposed independently by Danielsson and de Vries (2000), 
 

(i) Use bootstrapping to randomly sample from the standardized innovations for each future period 
and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 
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simulate future returns for dates ! = ! + 1, ! + 2, . . . , ! + ℎ: 
 

!!∗ = (! + !! !!!!∗ − !!!!!!∗ )! + !! !!!!∗ !)!/!  (8) 
 

!!∗ = !!∗!!∗ (9) 
 

!!∗ = !! + !!!!!!∗ + !!∗ (10) 
 
The algorithm contains the following steps, 

(i) Select {!!!!,∗ !!!!∗ , … , !!!!∗ } drawing randomly with replacement from {!!, !!, … , !!}. 
(ii) Take as initial values the last estimates:  !!∗ = !!, !!∗ = !!, !!∗ = !!. 
(iii) Set up for ! = ! + 1, ! + 2, . . . , ! + ℎ, 

• Plug !!!!∗  and !!!!  ∗ in equation (8) to get !!∗. 
• Plug !!∗  (from step (i)) and !!∗  in equation (9) to get !!  ∗  . 
• Plug !!!!  ∗ and !!  ∗   in equation (10) to get !!  ∗. 
• Then the simulated log return over ℎ days (!!:!∗ ) is the sum !!!!∗ + !!!!∗ + ⋯+ !!!!∗  

(iv) Repeating this procedure ! times yields ! simulated ℎ-day returns,  !!,!:!∗ , ! = 1, 2, . . . , !. 
 
We compute ℎ-day ahead VaR and ES forecasts as, 
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where ! is the indicator function that assumes value 1 if the ℎ-day return !!,!:!∗  is lower than VaR and 0 
otherwise. Thus, the ES is just the mean of the simulated returns below VaR. Finally, 
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and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
 
We use an expanding window to estimate the model, starting with the 2915 observations from the 
10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and apply the 
algorithm to generate ! = 5000 ℎ-day ahead return simulations from which we compute forecasts for 
VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample, 
12/5/2011-9/30/2016, obtaining daily forecasts of h-day ahead of the VaR, ES and SD risk measures. 
 
Following the McNeil & Frey (2000) proposal, under the EVT approach we estimate the ! and ! 
parameters by fitting the Generalized Pareto distribution (GPD) to the left tail of standardized return 
innovations. We generate ! = 5000 simulations for the h-day ahead return !!:!∗  using a combination of 
bootstrapping in-sample residuals from the fitted models (i.e., FHS) and GPD simulation. We apply the 
following algorithm, which was also proposed independently by Danielsson and de Vries (2000), 
 

(i) Use bootstrapping to randomly sample from the standardized innovations for each future period 
and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 
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simulate future returns for dates ! = ! + 1, ! + 2, . . . , ! + ℎ: 
 

!!∗ = (! + !! !!!!∗ − !!!!!!∗ )! + !! !!!!∗ !)!/!  (8) 
 

!!∗ = !!∗!!∗ (9) 
 

!!∗ = !! + !!!!!!∗ + !!∗ (10) 
 
The algorithm contains the following steps, 

(i) Select {!!!!,∗ !!!!∗ , … , !!!!∗ } drawing randomly with replacement from {!!, !!, … , !!}. 
(ii) Take as initial values the last estimates:  !!∗ = !!, !!∗ = !!, !!∗ = !!. 
(iii) Set up for ! = ! + 1, ! + 2, . . . , ! + ℎ, 

• Plug !!!!∗  and !!!!  ∗ in equation (8) to get !!∗. 
• Plug !!∗  (from step (i)) and !!∗  in equation (9) to get !!  ∗  . 
• Plug !!!!  ∗ and !!  ∗   in equation (10) to get !!  ∗. 
• Then the simulated log return over ℎ days (!!:!∗ ) is the sum !!!!∗ + !!!!∗ + ⋯+ !!!!∗  

(iv) Repeating this procedure ! times yields ! simulated ℎ-day returns,  !!,!:!∗ , ! = 1, 2, . . . , !. 
 
We compute ℎ-day ahead VaR and ES forecasts as, 
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where ! is the indicator function that assumes value 1 if the ℎ-day return !!,!:!∗  is lower than VaR and 0 
otherwise. Thus, the ES is just the mean of the simulated returns below VaR. Finally, 
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and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
 
We use an expanding window to estimate the model, starting with the 2915 observations from the 
10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and apply the 
algorithm to generate ! = 5000 ℎ-day ahead return simulations from which we compute forecasts for 
VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample, 
12/5/2011-9/30/2016, obtaining daily forecasts of h-day ahead of the VaR, ES and SD risk measures. 
 
Following the McNeil & Frey (2000) proposal, under the EVT approach we estimate the ! and ! 
parameters by fitting the Generalized Pareto distribution (GPD) to the left tail of standardized return 
innovations. We generate ! = 5000 simulations for the h-day ahead return !!:!∗  using a combination of 
bootstrapping in-sample residuals from the fitted models (i.e., FHS) and GPD simulation. We apply the 
following algorithm, which was also proposed independently by Danielsson and de Vries (2000), 
 

(i) Use bootstrapping to randomly sample from the standardized innovations for each future period 
and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 
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simulate future returns for dates ! = ! + 1, ! + 2, . . . , ! + ℎ: 
 

!!∗ = (! + !! !!!!∗ − !!!!!!∗ )! + !! !!!!∗ !)!/!  (8) 
 

!!∗ = !!∗!!∗ (9) 
 

!!∗ = !! + !!!!!!∗ + !!∗ (10) 
 
The algorithm contains the following steps, 

(i) Select {!!!!,∗ !!!!∗ , … , !!!!∗ } drawing randomly with replacement from {!!, !!, … , !!}. 
(ii) Take as initial values the last estimates:  !!∗ = !!, !!∗ = !!, !!∗ = !!. 
(iii) Set up for ! = ! + 1, ! + 2, . . . , ! + ℎ, 

• Plug !!!!∗  and !!!!  ∗ in equation (8) to get !!∗. 
• Plug !!∗  (from step (i)) and !!∗  in equation (9) to get !!  ∗  . 
• Plug !!!!  ∗ and !!  ∗   in equation (10) to get !!  ∗. 
• Then the simulated log return over ℎ days (!!:!∗ ) is the sum !!!!∗ + !!!!∗ + ⋯+ !!!!∗  

(iv) Repeating this procedure ! times yields ! simulated ℎ-day returns,  !!,!:!∗ , ! = 1, 2, . . . , !. 
 
We compute ℎ-day ahead VaR and ES forecasts as, 
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where ! is the indicator function that assumes value 1 if the ℎ-day return !!,!:!∗  is lower than VaR and 0 
otherwise. Thus, the ES is just the mean of the simulated returns below VaR. Finally, 
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and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
 
We use an expanding window to estimate the model, starting with the 2915 observations from the 
10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and apply the 
algorithm to generate ! = 5000 ℎ-day ahead return simulations from which we compute forecasts for 
VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample, 
12/5/2011-9/30/2016, obtaining daily forecasts of h-day ahead of the VaR, ES and SD risk measures. 
 
Following the McNeil & Frey (2000) proposal, under the EVT approach we estimate the ! and ! 
parameters by fitting the Generalized Pareto distribution (GPD) to the left tail of standardized return 
innovations. We generate ! = 5000 simulations for the h-day ahead return !!:!∗  using a combination of 
bootstrapping in-sample residuals from the fitted models (i.e., FHS) and GPD simulation. We apply the 
following algorithm, which was also proposed independently by Danielsson and de Vries (2000), 
 

(i) Use bootstrapping to randomly sample from the standardized innovations for each future period 
and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 
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simulate future returns for dates ! = ! + 1, ! + 2, . . . , ! + ℎ: 
 

!!∗ = (! + !! !!!!∗ − !!!!!!∗ )! + !! !!!!∗ !)!/!  (8) 
 

!!∗ = !!∗!!∗ (9) 
 

!!∗ = !! + !!!!!!∗ + !!∗ (10) 
 
The algorithm contains the following steps, 

(i) Select {!!!!,∗ !!!!∗ , … , !!!!∗ } drawing randomly with replacement from {!!, !!, … , !!}. 
(ii) Take as initial values the last estimates:  !!∗ = !!, !!∗ = !!, !!∗ = !!. 
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(iv) Repeating this procedure ! times yields ! simulated ℎ-day returns,  !!,!:!∗ , ! = 1, 2, . . . , !. 
 
We compute ℎ-day ahead VaR and ES forecasts as, 
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where ! is the indicator function that assumes value 1 if the ℎ-day return !!,!:!∗  is lower than VaR and 0 
otherwise. Thus, the ES is just the mean of the simulated returns below VaR. Finally, 
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and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
 
We use an expanding window to estimate the model, starting with the 2915 observations from the 
10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and apply the 
algorithm to generate ! = 5000 ℎ-day ahead return simulations from which we compute forecasts for 
VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample, 
12/5/2011-9/30/2016, obtaining daily forecasts of h-day ahead of the VaR, ES and SD risk measures. 
 
Following the McNeil & Frey (2000) proposal, under the EVT approach we estimate the ! and ! 
parameters by fitting the Generalized Pareto distribution (GPD) to the left tail of standardized return 
innovations. We generate ! = 5000 simulations for the h-day ahead return !!:!∗  using a combination of 
bootstrapping in-sample residuals from the fitted models (i.e., FHS) and GPD simulation. We apply the 
following algorithm, which was also proposed independently by Danielsson and de Vries (2000), 
 

(i) Use bootstrapping to randomly sample from the standardized innovations for each future period 
and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 
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simulate future returns for dates ! = ! + 1, ! + 2, . . . , ! + ℎ: 
 

!!∗ = (! + !! !!!!∗ − !!!!!!∗ )! + !! !!!!∗ !)!/!  (8) 
 

!!∗ = !!∗!!∗ (9) 
 

!!∗ = !! + !!!!!!∗ + !!∗ (10) 
 
The algorithm contains the following steps, 

(i) Select {!!!!,∗ !!!!∗ , … , !!!!∗ } drawing randomly with replacement from {!!, !!, … , !!}. 
(ii) Take as initial values the last estimates:  !!∗ = !!, !!∗ = !!, !!∗ = !!. 
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(iv) Repeating this procedure ! times yields ! simulated ℎ-day returns,  !!,!:!∗ , ! = 1, 2, . . . , !. 
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where ! is the indicator function that assumes value 1 if the ℎ-day return !!,!:!∗  is lower than VaR and 0 
otherwise. Thus, the ES is just the mean of the simulated returns below VaR. Finally, 
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and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
 
We use an expanding window to estimate the model, starting with the 2915 observations from the 
10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and apply the 
algorithm to generate ! = 5000 ℎ-day ahead return simulations from which we compute forecasts for 
VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample, 
12/5/2011-9/30/2016, obtaining daily forecasts of h-day ahead of the VaR, ES and SD risk measures. 
 
Following the McNeil & Frey (2000) proposal, under the EVT approach we estimate the ! and ! 
parameters by fitting the Generalized Pareto distribution (GPD) to the left tail of standardized return 
innovations. We generate ! = 5000 simulations for the h-day ahead return !!:!∗  using a combination of 
bootstrapping in-sample residuals from the fitted models (i.e., FHS) and GPD simulation. We apply the 
following algorithm, which was also proposed independently by Danielsson and de Vries (2000), 
 

(i) Use bootstrapping to randomly sample from the standardized innovations for each future period 
and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 
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simulate future returns for dates ! = ! + 1, ! + 2, . . . , ! + ℎ: 
 

!!∗ = (! + !! !!!!∗ − !!!!!!∗ )! + !! !!!!∗ !)!/!  (8) 
 

!!∗ = !!∗!!∗ (9) 
 

!!∗ = !! + !!!!!!∗ + !!∗ (10) 
 
The algorithm contains the following steps, 

(i) Select {!!!!,∗ !!!!∗ , … , !!!!∗ } drawing randomly with replacement from {!!, !!, … , !!}. 
(ii) Take as initial values the last estimates:  !!∗ = !!, !!∗ = !!, !!∗ = !!. 
(iii) Set up for ! = ! + 1, ! + 2, . . . , ! + ℎ, 

• Plug !!!!∗  and !!!!  ∗ in equation (8) to get !!∗. 
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• Plug !!!!  ∗ and !!  ∗   in equation (10) to get !!  ∗. 
• Then the simulated log return over ℎ days (!!:!∗ ) is the sum !!!!∗ + !!!!∗ + ⋯+ !!!!∗  

(iv) Repeating this procedure ! times yields ! simulated ℎ-day returns,  !!,!:!∗ , ! = 1, 2, . . . , !. 
 
We compute ℎ-day ahead VaR and ES forecasts as, 
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where ! is the indicator function that assumes value 1 if the ℎ-day return !!,!:!∗  is lower than VaR and 0 
otherwise. Thus, the ES is just the mean of the simulated returns below VaR. Finally, 
 

!"!:!! = (!")!! !!,!:!∗ ! !!,!:!∗ !!"#!:!
! − !"!:!!

!

!!!

!/!

 

 
and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
 
We use an expanding window to estimate the model, starting with the 2915 observations from the 
10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and apply the 
algorithm to generate ! = 5000 ℎ-day ahead return simulations from which we compute forecasts for 
VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample, 
12/5/2011-9/30/2016, obtaining daily forecasts of h-day ahead of the VaR, ES and SD risk measures. 
 
Following the McNeil & Frey (2000) proposal, under the EVT approach we estimate the ! and ! 
parameters by fitting the Generalized Pareto distribution (GPD) to the left tail of standardized return 
innovations. We generate ! = 5000 simulations for the h-day ahead return !!:!∗  using a combination of 
bootstrapping in-sample residuals from the fitted models (i.e., FHS) and GPD simulation. We apply the 
following algorithm, which was also proposed independently by Danielsson and de Vries (2000), 
 

(i) Use bootstrapping to randomly sample from the standardized innovations for each future period 
and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 
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The algorithm contains the following steps, 

(i) Select {!!!!,∗ !!!!∗ , … , !!!!∗ } drawing randomly with replacement from {!!, !!, … , !!}. 
(ii) Take as initial values the last estimates:  !!∗ = !!, !!∗ = !!, !!∗ = !!. 
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(iv) Repeating this procedure ! times yields ! simulated ℎ-day returns,  !!,!:!∗ , ! = 1, 2, . . . , !. 
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the iid assumption, let us consider the distribution function of excesses !   =   ! − ! over a high, fixed 
threshold ! , !!(!)   =   !  (! = ! − ! ≤ !|! < !)   =    [!  (!) − !  (! − !)]/[!(!)] , !   ≥   033 . Pickands 
(1975) shows that the Generalized Pareto distribution (GPD) arises naturally as the limit distribution of 
the scaled excesses of identical and independently distributed (iid) random variables over high thresholds. 
We say that excesses from a given threshold follow a General Pareto distribution ! = ! − ! ∼ !"#(!, !) if
         

!! ! ≈ !"#!,! ! =
1 − 1 +

!"
!

!!!
, ! ≠ 0

1 − exp −
!
! ,                        ! = 0

 

 
!"#!,! !  has support ! ≥ 0 if ! ≥ 0 and 0 ≤ ! ≤ −!/! if ! < 0 where ! > 0 is a scale parameter and 
! is the tail shape parameter, which is crucial because it governs the tail behavior of !"#!,! ! . The case 
! > 0 corresponds to heavy-tailed distributions whose tails decay like power functions, such as Pareto, 
Student-t, Cauchy, Burr, loggamma and Fréchet distributions.  In this case, the tail index parameter equal 
to 1/! corresponds to, for example, the degrees of freedom of the Student-t distribution. The case ! = 0 
corresponds to distributions like Normal, exponential, gamma and lognormal, whose tails essentially 
decay exponentially. The final group of distributions are short-tailed distributions (! < 0) with a finite 
right endpoint, such as the uniform and beta distributions. 
 
The implied assumption is that the tail of the underlying distribution begins at the threshold u. From our 
sample of ! data a random number !! will exceed this threshold. If we assume that the !! excesses over 
the threshold are iid with exact GPD distribution, Smith (1987)  has  shown  that  maximum  likelihood  
estimates  ! = !!  and  ! = !! of the GPD parameters ! and ! are consistent and asymptotically normal 
as !! → ∞, provided ! > −1/2. Under the weaker assumption that the excesses are iid from a !!(!) 
which is only approximately GPD he also obtains asymptotic normality results for ! and !. 
 
Consider now the following equality for points ! < ! in the left tail of !: 

 
! ! = ! ! −!! !−! ! ! = !(!)(1−!! !   −   ! ) 

 
If we estimate the first term on the right-hand side of the equation using the proportion of tail data !!/!, 
and if we estimate the second term by approximating the excess distribution with a generalized Pareto 
distribution fitted by maximum likelihood, we get the tail estimator  

!! ! =
!!
!

1 + !
! − !
!

!!/!
 

 
It is very important to note that the distribution F of the conditional model and the distribution !"#!,!  for 
{!} over threshold ! are not linked. Thus, it is possible to use any conditional model to filter the data 
before applying EVT to !!. In our analysis we assume a variety of asymmetric distributions for ! that 
give rise to different conditional EVT estimates. Under the EVT approach, the risk measures are obtained, 
 

!"#!! = !! + !! ! +
!
! 1 −

!
!!/!

!!
 

                                                        
33 Notice that we focus on the lower tail of the data, and we have adapted all formulations accordingly. The choice of ! is 
subject to a trade-off: very high ! leads to an estimator with large variance, while low ! induces bias. The choice of ! is the 
most important implementation issue 
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 parameters by fitting the Generalized Pareto 
distribution (GPD) to the left tail of standardized return innovations. 
We generate N = 5000 simulations for the h-day ahead return 
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simulate future returns for dates ! = ! + 1, ! + 2, . . . , ! + ℎ: 
 

!!∗ = (! + !! !!!!∗ − !!!!!!∗ )! + !! !!!!∗ !)!/!  (8) 
 

!!∗ = !!∗!!∗ (9) 
 

!!∗ = !! + !!!!!!∗ + !!∗ (10) 
 
The algorithm contains the following steps, 

(i) Select {!!!!,∗ !!!!∗ , … , !!!!∗ } drawing randomly with replacement from {!!, !!, … , !!}. 
(ii) Take as initial values the last estimates:  !!∗ = !!, !!∗ = !!, !!∗ = !!. 
(iii) Set up for ! = ! + 1, ! + 2, . . . , ! + ℎ, 

• Plug !!!!∗  and !!!!  ∗ in equation (8) to get !!∗. 
• Plug !!∗  (from step (i)) and !!∗  in equation (9) to get !!  ∗  . 
• Plug !!!!  ∗ and !!  ∗   in equation (10) to get !!  ∗. 
• Then the simulated log return over ℎ days (!!:!∗ ) is the sum !!!!∗ + !!!!∗ + ⋯+ !!!!∗  

(iv) Repeating this procedure ! times yields ! simulated ℎ-day returns,  !!,!:!∗ , ! = 1, 2, . . . , !. 
 
We compute ℎ-day ahead VaR and ES forecasts as, 
 

!"#!:!! = !"#$"%&'(" !!,!:!∗ , ! = 1,… ,!; 100!     ! = 1,2, … , ! 

!"!:!! = (!")!! !!,!:!∗ ! !!,!:!∗ !!"#!:!
!

!

!!!

 

 
where ! is the indicator function that assumes value 1 if the ℎ-day return !!,!:!∗  is lower than VaR and 0 
otherwise. Thus, the ES is just the mean of the simulated returns below VaR. Finally, 
 

!"!:!! = (!")!! !!,!:!∗ ! !!,!:!∗ !!"#!:!
! − !"!:!!

!

!!!

!/!

 

 
and, thus SD is just the standard deviation around the ES, considering only the values below VaR. 
 
We use an expanding window to estimate the model, starting with the 2915 observations from the 
10/2/2000-12/2/2011 period. Each day we add a new observation, estimate the models and apply the 
algorithm to generate ! = 5000 ℎ-day ahead return simulations from which we compute forecasts for 
VaR and ES. The forecasting exercise extends over 1260 days, the last five years in our sample, 
12/5/2011-9/30/2016, obtaining daily forecasts of h-day ahead of the VaR, ES and SD risk measures. 
 
Following the McNeil & Frey (2000) proposal, under the EVT approach we estimate the ! and ! 
parameters by fitting the Generalized Pareto distribution (GPD) to the left tail of standardized return 
innovations. We generate ! = 5000 simulations for the h-day ahead return !!:!∗  using a combination of 
bootstrapping in-sample residuals from the fitted models (i.e., FHS) and GPD simulation. We apply the 
following algorithm, which was also proposed independently by Danielsson and de Vries (2000), 
 

(i) Use bootstrapping to randomly sample from the standardized innovations for each future period 
and for each of the ! trajectories. 

(ii) If a selected innovation !∗  is below the threshold (!), we draw a realization ! from the previously 
estimated GPD(!, !).  The value ! is taken as the excess below the threshold !, i.e., the numerical 
value of the innovation to be used in simulation will be: !∗ = ! − !. 

(iii) Otherwise, return standardized innovations themselves. 
(iv) Finally, we trace back from simulated standardized innovations to recover the returns and we end 

(

 
using a combination of bootstrapping in-sample residuals from the 
fitted models (i.e., FHS) and GPD simulation. We apply the following 
algorithm, which was also proposed independently by Danielsson and 
de Vries (2000),

(i)	 Use bootstrapping to randomly sample from the standardized 
innovations for each future period and for each of the N trajec-
tories.

(ii)	 If a selected innovation z* is below the threshold (u), we draw a 
realization y from the previously estimated GPD(
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(iv)	 Finally, we trace back from simulated standardized innova-
tions to recover the returns and we end up with N sequences 
of hypothetical daily returns for day s + 1 through day s + h 
. From these, we calculate the hypothetical h-day returns as 
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up with N sequences of hypothetical daily returns for day ! + 1 through day ! + ℎ. From these, we 
calculate the hypothetical h-day returns as !!:!∗ = !!,!!!!

!!!  for ! = 1, 2, … , ! , and we can 
calculate the h-day VaR, h-day ES and h-day SD, as described above. 

(v) We repeat this procedure for ! + 1, ! + 2, ! + 3, . . . , ! + 1259, to cover the out-of-sample period. 
 

3.4. Data and Estimation Models 
 
We work with daily percentage returns on assets over the sample period 10/2/2000 - 9/30/2016 (4175 
sample observations). Daily returns are computed as 100 times the difference of the log prices, i.e. 
100[!" !!!! −   !"(!!)]%. The financial assets considered are: International Business Machines [IBM] 
($), Banco Santander [SAN] (€), AXA [AXA] (€) and BP [BP] (₤). The data were extracted from 
Datastream. 
 
Table 22 reports descriptive statistics for the daily percentage return series.  All of them have a mean 
close to zero. Median returns are zero. SAN has the largest total range (!"# −!"#) and BP has the 
smallest range. The unconditional standard deviation (S.D.) is around 2, with AXA having the highest 
and IBM the lowest one for IBM. All assets have negative skewness, except AXA. For all assets 
considered the kurtosis statistic is large, implying that the distributions of those returns have much thicker 
tails than the Normal distribution. Accordingly, the Jarque-Bera statistic (J-B) is statistically significant, 
rejecting the assumption of Normality in all cases. 
 
      

 Mean (bps) Median (bps) Max Min S.D. Skewness Kurtosis J-B 
IBM 0.83 0 11.35 -16.89 1.58 -0.22 12.33 15194.87 
SAN 1.56 0 20.88 -22.17 2.26 -0.07 10.50 9793.17 
AXA 1.47 0 19.78 -20.35 2.69 0.19 10.24 9155.81 
BP -0.69 0 10.58 -14.04 1.69 -0.19 8.01 4390.88 

 
Table 22: Descriptive statistics for daily percent returns. Sample: 10/2/2000 - 9/30/2016 (4175 daily 

observations). Mean and median returns in basis points. S.D. is the standard deviation, J-B is the Jarque-
Bera test statistic. 

 
To perform an ES analysis, we estimate the APARCH volatility model (Ding, Granger and Engle, 1993) 
under the different probability distributions for return innovations: Gaussian, Student-t, skewed Student-t, 
skewed Generalized Error and Johnson SU. An AR(1) model was considered for the conditional mean 
return, which is sufficient to produce serially uncorrelated innovations34. The APARCH model is 
particularly successful in capturing the heteroscedasticity exhibited by the data due to the power of the 
conditional standard deviation is a free parameter, which provides more flexibility to the dynamics of 
volatility. 
 
For a given return series !!, . . . , !! , the model adopted is 
 

!! = !! + !!!!!! + !!                                        !! = !!!!            ! = 1, 2, … , ! 
 

!!! = ! + !!( !!!! − !!!!!!)! + !!(!!!!)! 
 
where !, ! ! , !  and ! are parameters to be estimated. The parameter !  reflects the leverage effect 
(−1 < ! < 1). A positive (resp. negative) value of !  means that past negative (resp. positive) shocks 

                                                        
34 All computations were performed with the rugarch package (version 1.3-4) of R software (version 3.1.1) designed for the 
estimation and forecast of various univariate ARCH-type models. In the estimation of EVT models, we use ismev (version 
1.41) and evir (version 1.7-3) packages. 
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The financial assets considered are: International Business Machines [IBM]
($), Banco Santander [SAN] (€), AXA [AXA] (€) and BP [BP] (₤). The data 
were extracted from Datastream.

Table 22 reports descriptive statistics for the daily percentage return 
series. All of them have a mean close to zero. Median returns are zero. 
SAN has the largest total range (max – min) and BP has the smallest 
range. The unconditional standard deviation (S.D.) is around 2, with AXA 
having the ighest and IBM the lowest one for IBM. All assets have negative 
skewness, except AXA. For all assets considered the kurtosis statistic is large, 
implying that the distributions of those returns have much thicker tails 
than the Normal distribution. Accordingly, the Jarque-Bera statistic (J-B) is 
statistically significant, rejecting the assumption of Normality in all cases.

Table 22: Descriptive statistics for daily percent returns

Sample: 10/2/2000 - 9/30/2016 (4175 daily observations). Mean and median 
returns in basis points. S.D. is the standard deviation, J-B is the Jarque-Bera 
test statistic.

Mean (bps) Median (bps) Max Min S.D. Skewness Kurtosis J-B
IBM 0.83 0 11.35 -16.89 1.58 -0.22 12.33 15194.87
SAN 1.56 0 20.88 -22.17 2.26 -0.07 10.50 9793.17
AXA 1.47 0 19.78 -20.35 2.69 0.19 10.24 9155.81
BP -0.69 0 10.58 -14.04 1.69 -0.19 8.01 4390.88
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To perform an ES analysis, we estimate the APARCH volatility model 
(Ding, Granger and Engle, 1993) under the different probability distri-
butions for return innovations: Gaussian, Student-t, skewed Student-t, 
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have a deeper impact on current conditional volatility than past positive (resp. negative) shocks. The 
parameter ! plays the role of a Box-Cox transformation of !!(! > 0). 
 
In EVT implementation we use 10% of the data as the threshold excess. For the conditional models, a 
filter is necessary to model the conditional mean and the variance of the data. Thus, we estimate the 
AR(1)-APARCH(1,1) model described above, in which z represents a F distributed white noise series 
with unit variance. As explained previously, we set F to be Gaussian, Student-t, skewed Student-t, 
skewed Generalized Error and Johnson SU distributions. In all models we jointly estimate by maximum 
likelihood the parameters in the equation for the mean return, the equation for its conditional standard 
deviation and the probability distribution for the return innovations. In addition, through the usual 
diagnostics performed on the standardized residuals and their squared values, we assess that returns are 
properly filtered. Based on this filtering, the conditional models are estimated as described in the previous 
subsections. 
 
Table 23 presents the results of the estimation by the maximum likelihood method of the Generalized 
Pareto distribution parameters jointly with the respective parameters of the probability distribution of the 
innovations and those of the model AR(1)- APARCH(1,1), for a given threshold !, for each asset. For all 
asset returns, the estimated tail index ! of the Generalized Pareto distribution is positive. Then, the left 
tail of the GPD distribution is fat and the probability of occurrence of extreme losses is higher than 
predicted by the Normal distribution. The estimated tail indexes of IBM and SAN are higher than those of 
AXA and BP, reflecting a thicker left tail of the return distribution. 
 
Table 24 shows estimated parameters for the EVT-JSU-AR(1)-APARCH(1,1) model under a JSU 
distribution for all assets35. The autoregressive effect in the volatility specification is strong, with 
!!around 0.93, suggesting strong memory effects. The estimated !! coefficient is positive and statistically 
significant at 10% in all cases, indicating the existence of a leverage effect for negative returns in the 
conditional volatility specification. It is also important that the skewness parameter in the Johnson SU is 
less than 0 for all assets, suggesting the convenience of incorporating negative asymmetry to model 
innovations appropriately, although this parameter is not significant at 5% for IBM and at 10% for BP. 
The shape parameter is low, implying high kurtosis. Finally, ! takes values between 1.04 and 1.09, being 
significantly different from 2. This result suggests that, instead of modeling the conditional variance, we 
should model the conditional standard deviation, as it has been pointed out for a variety of assets by 
Garcia-Jorcano and Novales (2017). 
 
The maximum likelihood estimates of the Generalized Pareto distribution parameters for IBM are 
!, ! = 0.39, 0.51), with standard errors of 0.12 and 0.07 respectively. Figure 16 shows a well-defined 

likelihood profile for this asset with a maximum log-likelihood of -91.877 reached for ! = 0.39. Thus, 
the model we have fitted is essentially a very heavy-tailed, infinite-variance model. 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                        
35 Estimation results for alternative models are available from the author upon request. 
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are properly filtered. Based on this filtering, the conditional models are 
estimated as described in the previous subsections.

Table 23 presents the results of the estimation by the maximum likeli-
hood method of the Generalized Pareto distribution parameters jointly 
with the respective parameters of the probability distribution of the 
innovations and those of the model AR(1)- APARCH(1,1), for a given 
threshold u , for each asset. For all asset returns, the estimated tail index 
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Under the EVT approach, VaR and ES are modeled using the concept of threshold exceedance. The 
peaks-over-threshold (POT) models developed around this concept center on the analysis of the 
Generalized Pareto distribution, which may be understood as a limiting tail distribution for a wide variety 
of commonly studied continuous distributions. The POT is the typical approach used in finance. Under 
the iid assumption, let us consider the distribution function of excesses !   =   ! − ! over a high, fixed 
threshold ! , !!(!)   =   !  (! = ! − ! ≤ !|! < !)   =    [!  (!) − !  (! − !)]/[!(!)] , !   ≥   033 . Pickands 
(1975) shows that the Generalized Pareto distribution (GPD) arises naturally as the limit distribution of 
the scaled excesses of identical and independently distributed (iid) random variables over high thresholds. 
We say that excesses from a given threshold follow a General Pareto distribution ! = ! − ! ∼ !"#(!, !) if
         

!! ! ≈ !"#!,! ! =
1 − 1 +

!"
!

!!!
, ! ≠ 0

1 − exp −
!
! ,                        ! = 0

 

 
!"#!,! !  has support ! ≥ 0 if ! ≥ 0 and 0 ≤ ! ≤ −!/! if ! < 0 where ! > 0 is a scale parameter and 
! is the tail shape parameter, which is crucial because it governs the tail behavior of !"#!,! ! . The case 
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parameter ! plays the role of a Box-Cox transformation of !!(! > 0). 
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AR(1)-APARCH(1,1) model described above, in which z represents a F distributed white noise series 
with unit variance. As explained previously, we set F to be Gaussian, Student-t, skewed Student-t, 
skewed Generalized Error and Johnson SU distributions. In all models we jointly estimate by maximum 
likelihood the parameters in the equation for the mean return, the equation for its conditional standard 
deviation and the probability distribution for the return innovations. In addition, through the usual 
diagnostics performed on the standardized residuals and their squared values, we assess that returns are 
properly filtered. Based on this filtering, the conditional models are estimated as described in the previous 
subsections. 
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The maximum likelihood estimates of the Generalized Pareto distribution parameters for IBM are 
!, ! = 0.39, 0.51), with standard errors of 0.12 and 0.07 respectively. Figure 16 shows a well-defined 

likelihood profile for this asset with a maximum log-likelihood of -91.877 reached for ! = 0.39. Thus, 
the model we have fitted is essentially a very heavy-tailed, infinite-variance model. 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                        
35 Estimation results for alternative models are available from the author upon request. 
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Table 23: Parameter estimates for the Generalized Pareto Distribution using 
daily returns

Sample: 10/2/2000 - 9/30/2016. u is the threshold, 
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Under the EVT approach, VaR and ES are modeled using the concept of threshold exceedance. The 
peaks-over-threshold (POT) models developed around this concept center on the analysis of the 
Generalized Pareto distribution, which may be understood as a limiting tail distribution for a wide variety 
of commonly studied continuous distributions. The POT is the typical approach used in finance. Under 
the iid assumption, let us consider the distribution function of excesses !   =   ! − ! over a high, fixed 
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(1975) shows that the Generalized Pareto distribution (GPD) arises naturally as the limit distribution of 
the scaled excesses of identical and independently distributed (iid) random variables over high thresholds. 
We say that excesses from a given threshold follow a General Pareto distribution ! = ! − ! ∼ !"#(!, !) if
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!"#!,! !  has support ! ≥ 0 if ! ≥ 0 and 0 ≤ ! ≤ −!/! if ! < 0 where ! > 0 is a scale parameter and 
! is the tail shape parameter, which is crucial because it governs the tail behavior of !"#!,! ! . The case 
! > 0 corresponds to heavy-tailed distributions whose tails decay like power functions, such as Pareto, 
Student-t, Cauchy, Burr, loggamma and Fréchet distributions.  In this case, the tail index parameter equal 
to 1/! corresponds to, for example, the degrees of freedom of the Student-t distribution. The case ! = 0 
corresponds to distributions like Normal, exponential, gamma and lognormal, whose tails essentially 
decay exponentially. The final group of distributions are short-tailed distributions (! < 0) with a finite 
right endpoint, such as the uniform and beta distributions. 
 
The implied assumption is that the tail of the underlying distribution begins at the threshold u. From our 
sample of ! data a random number !! will exceed this threshold. If we assume that the !! excesses over 
the threshold are iid with exact GPD distribution, Smith (1987)  has  shown  that  maximum  likelihood  
estimates  ! = !!  and  ! = !! of the GPD parameters ! and ! are consistent and asymptotically normal 
as !! → ∞, provided ! > −1/2. Under the weaker assumption that the excesses are iid from a !!(!) 
which is only approximately GPD he also obtains asymptotic normality results for ! and !. 
 
Consider now the following equality for points ! < ! in the left tail of !: 
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If we estimate the first term on the right-hand side of the equation using the proportion of tail data !!/!, 
and if we estimate the second term by approximating the excess distribution with a generalized Pareto 
distribution fitted by maximum likelihood, we get the tail estimator  
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It is very important to note that the distribution F of the conditional model and the distribution !"#!,!  for 
{!} over threshold ! are not linked. Thus, it is possible to use any conditional model to filter the data 
before applying EVT to !!. In our analysis we assume a variety of asymmetric distributions for ! that 
give rise to different conditional EVT estimates. Under the EVT approach, the risk measures are obtained, 
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N	 IBM -1.041 0.392 0.493 0.121 0.072

	 SAN -1.239 0.240 0.522 0.103 0.070

	 AXA -1.139 0.048 0.712 0.067 0.079

	 BP -1.131 0.055 0.642 0.086 0.079

ST	 IBM -1.061 0.391 0.514 0.120 0.075

	 SAN -1.249 0.235 0.534 0.101 0.071

	 AXA -1.175 0.059 0.697 0.070 0.079

	 BP -1.158 0.072 0.635 0.089 0.080

SKST	 IBM -1.051 0.390 0.514 0.120 0.075

	 SAN -1.235 0.229 0.539 0.100 0.071

	 AXA -1.159 0.057 0.702 0.069 0.079

	 BP -1.154 0.078 0.627 0.090 0.079

SGED	 IBM -1.037 0.376 0.524 0.118 0.076

	 SAN -1.233 0.225 0.542 0.100 0.072

	 AXA -1.152 0.055 0.705 0.069 0.079

	 BP -1.145 0.072 0.628 0.089 0.079

JSU	 IBM -1.053 0.392 0.516 0.121 0.075

	 SAN -1.236 0.230 0.539 0.100 0.071

	 AXA -1.157 0.057 0.703 0.069 0.079

	 BP -1.152 0.074 0.631 0.089 0.079
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Figure 16: Likelihood profile for ζ-parameter from the threshold excess model 
applied to filtered residuals of IBM under JSU-EVT model

We consider the tail of the IBM return distribution as defined by a thres-
hold u = 1.0533, which leaves us with 126 exceedances (10% of 1260 
data points). Figure 17 shows the fitted GPD model for the excess dis-
tribution, Fu(y) where y = z – u, superimposed on points plotted at 
empirical estimates of excess probabilities for each loss (126 losses)36. 
Notice the good correspondence between the empirical estimates and 
the GPD curve. Under the EVT approach the filtered residuals from all 
models considered show a very similar fit to the GPD curve, especially 
when the filtered residuals come from asymmetric distributions. Figu-
re 18 shows the estimation tail probabilities on logarithmic axes. The 
points on the graph are the 126 threshold exceedances and are plotted at 
y-values corresponding to the tail of the empirical distribution function. 
The smooth curve running through the points is the tail estimator (defi-
ned for the right tail):
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Figure 17: Empirical distribution of threshold excesses for IBM filtered residuals under EVT-AR(1)-
APARCH(1,1)-JSU model versus the fitted GPD. 

 
 
 

                                                        
36 Figures 17 and 18 show the right tail, considering losses as positive numbers. 
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Figure 17: Empirical distribution of threshold excesses for IBM filtered resi-
duals under EVT-AR(1)-APARCH(1,1)-JSU model versus the fitted GPD

Figure 18: The smooth curve through the points shows the estimated tail of filtered 
residuals for IBM under AR(1)-APARCH(1,1)-JSU model using the tail estimator. Points are 
plotted at empirical tail probabilities calculated from the empirical distribution function

3.5.	 Evaluating 1-day ES forecasts

3.5.1.	  ES forecasts under the parametric approach

In this section we present the results from VaR and ES forecasts fo-
llowing a standard time-varying parametric approach. We restrict our 
attention to the left tail of the distribution and the 1%, 2.5% and 5% sig-
nificance levels. We compute recursive ES forecasts from an expanding 
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window. First, each model is estimated using 2915 daily observations 
from the 10/2/2000-12/2/2011 sample period. After that, we increase 
the initial sample by one data point each day until the end of 2016, to 
compute 1-day ahead VaR and ES forecasts over five years: 2012-2016 
(1260 data observations). In this forecasting period models are estimated 
every 50 days. This choice tries to reduce the computational cost while 
avoiding frequent parameter variation due in part to pure noise.

Table 25 displays descriptive statistics for returns for in-sample 
(10/2/2000-12/2/2011) and out-of-sample (12/5/2011-9/30/2016) perio-
ds. Skewness is negative, except for SAN and AXA in the in-sample 
period. Likewise, kurtosis is higher than 3 for the four stocks in both pe-
riods. We are thus confronted with fat tail distributions and the Jarque-
Bera statistic clearly rejects the null hypothesis of a Normal distribution. 
VaR and ES forecasts based on the assumption of a Normal distribution 
of returns are therefore inappropriate, so we will compute them under a 
non-Normal framework using alternative distributions as well as relying 
on a different approach, like EVT. Focusing on the behavior of the left 
tail of these leptokurtic distributions seems justified as it should allow 
for a better estimation of extreme variations in financial returns.

We forecast both risk measures, not only with the full distribution but 
also using only extreme events as explained previously. Figure 19 shows 
IBM daily percentage returns (1260 data) together with out-of-sample 
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Figure 18: The smooth curve through the points shows the estimated tail of filtered residuals for IBM 
under AR(1)-APARCH(1,1)-JSU model using the tail estimator. Points are plotted at empirical tail 
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Figure 18: The smooth curve through the points shows the estimated tail of filtered residuals for IBM 
under AR(1)-APARCH(1,1)-JSU model using the tail estimator. Points are plotted at empirical tail 

probabilities calculated from the empirical distribution function. 
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Table 25: Descriptive statistics for log-returns (%) of individual stocks over 
the in-sample (10/2/2000-12/2/2011) and out-of-sample (12/5/2011-
9/30/2016) periods. JB stat. is the Jarque-Bera test statistic

In-Sample Out-of-Sample

Daily IBM SAN AXA BP IBM SAN AXA BP

Observations 2915 2915 2915 2915 1260 1260 1260 1260

Mean (bps.) 1.79 -2.18 -3.94 -0.89 -1.41 -0.13 4.26 -0.26

Median (bps.) 0.00 0.00 0.00 0.00 0.00 1.94 11.04 0.00

St. Dev 1.74 2.31 2.96 1.80 1.18 2.13 1.93 1.43

Skewness -0.12 0.27 0.31 -0.19 -1.00 -1.09 -0.72 -0.16

Kurtosis 11.47 9.09 9.33 7.87 9.77 14.79 9.10 6.84

Maximum 11.35 20.88 19.78 10.58 4.91 10.14 7.28 6.93

10 percentile -1.73 -2.63 -3.07 -1.96 -1.24 -2.43 -2.09 -1.60

5 percentile -2.66 -3.67 -4.60 -2.73 -1.73 -3.38 -3.22 -2.31

1 percentile -5.13 -6.68 -8.46 -5.32 -3.59 -4.97 -4.96 -3.59

Minimum -16.89 -12.72 -20.35 -14.04 -8.64 -22.17 -16.82 -9.08

JB stat. 8724.16 4548.12 4918.84 2902.54 2614.85 7549.73 2063.42 780.63

Figure 19: IBM daily percent returns and VaR
1 % andVaR

5 % forecasts with the full 
sample as well as using only extreme values
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Figure 20: IBM daily percent returns and ES
1 % andES

5 %forecasts with the full 
sample as well as using only extreme values
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We now examine our forecasts for the complete out-of-sample period 
(5 years, 1260 data). Since we generate time series of VaR and ES fo-
recasts, we present a summary of results over the 5-year period. Table 
26 presents the average of out-of-sample 1-day ES forecasts 
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We now examine our forecasts for the complete out-of-sample period (5 years, 1260 data). Since we 
generate time series of VaR and ES forecasts, we present a summary of results over the 5-year period. 
Table 26 presents the average of out-of-sample 1-day ES forecasts (!"), the violations ratio (Viol) of the 
underlying VaR and the backtesting results for the different models for IBM37. Our discussion here is 
focused on the general patterns that appear in these estimation results. The average ES forecasts from 
conditional EVT-based models can be seen to be “more negative” than forecasts from conditional models 
not based on EVT. As shown in Figure 20, differences on ES forecasts at 1% significance level are larger 
than those at 5% significance level. 
 
It seems desirable that a good ES model may have a violation ratio close to the theoretical one. Indeed, as 
we will see below, some backtesting tests for ES are based on this comparison. Conditional EVT-based 
models tend to yield a violation ratio very close to the theoretical one. Departures from the theoretical 
violation ratio are larger for models not using EVT, especially under the Normal and Student-t 
distributions for return innovations. In general, the violations ratio suggests that conditional EVT-based 
models forecast the VaR quantile correctly, corroborating Kuester, Mittnik and Paolella (2006), who 
attest to the superiority of this approach. On the other hand, conditional ES models not based on EVT that 
incorporate heavy-tailed distributions also perform well, corroborating Mabrouk and Saadi (2012). But 
we will show below that EVT-based models not only show an accurate violation ratio, but they also have 
a good performance in ES backtesting. On the other hand, non-EVT based models have a violation ratio 
higher than expected and they show a worse ES forecasting performance than EVT-based models. 
 
If we focus on the conditional models not based on EVT, all tests show that models with asymmetric 
distributions for return innovations produce better ES forecasts. If we take higher p-values as an 
indication of how well the model fulfills the condition established in the null hypothesis, then the JSU 
distribution can be seen as showing the best performance in ES forecasting for the set of four stocks.  On 
the other hand, the !! test by Acerbi & Szekely and the tests by Costanzino & Curran and Du & 
Escanciano do not discriminate among asymmetric distributions. 
 
Under the null hypothesis Acerbi & Szekely the number of theoretical VaR breaches is !!! !! = !", 
where !! is the indicator of VaR breaches. The relationship between the two test statistics of Acerbi & 
Szekely is:  !! = (1 +  !!)!!/!! − 1. This shows that while !!, being just an average taken over 
excesses themselves, is insensitive to an excessive number of exceptions,  !!  depends on that number 
through the ratio !!/!!. This is why, when the number of violations exceeds the theoretical level, p-
values for the !!-test are lower than for the !! test. An ES model will pass the !! test when not only the 
magnitude but also the frequency of the excesses is statistically equal to the expected one38. 
 
At the 1% significance level, p-values of Acerbi & Szekely and Graham & Pál tests for the conditional 
models not based on EVT theory are very close to 0. In these cases, we obtain positive realized values for 
!! and !!, instead of them being equal to zero.  In short, we reject H0 because of risk undervaluation. For 
these three tests we observe large differences in p-values between conditional models based on EVT and 
non-EVT based conditional models in favor of the former, which seem to produce better risk forecasts. 
The Graham & Pál test discriminates against the Normal and Student-t distribution for almost all 
significance levels for the four stocks, but only for the non-EVT based ES models. 
 
We indicate in boldface the p-values of the Righi & Ceretta, Acerbi & Szekely and Graham & Pál tests 
when we have obtained statistics with opposite sign to the one embedded in the alternative hypothesis.  
That essentially arises for EVT-based models. In the Righi & Ceretta test we have !!:  !(!"!) = 0, where  
!"! is the statistic of the test which estimate the expected loss and its dispersion through the ES and SD, 
against !!:  ! !"! < 0 but with some models we obtain ! !"! > 0, reflecting that most excesses fall 
between VaR  and ES, not beyond ES, especially under the EVT approach. The first test by Acerbi & 
                                                        
37 Results for the rest of individual stocks assets are available from the author upon request. 
38 Acerbi & Szekely (2014) show that the Z2 test is more powerful than the Z1 test when the null and alternative hypothesis 
differ in volatility, while Z1 is more powerful than Z2 in the case of different tail indexes. 
 

, the 
violations ratio (Viol) of the underlying VaR and the backtesting results 
for the different models for IBM37. Our discussion here is focused on the 
general patterns that appear in these estimation results. The average ES 
forecasts from conditional EVT-based models can be seen to be “more 
negative” than forecasts from conditional models not based on EVT. As 
shown in Figure 20, differences on ES forecasts at 1% significance level 
are larger than those at 5% significance level.
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EVT-based models forecast the VaR quantile correctly, corroborating 
Kuester, Mittnik and Paolella (2006), who attest to the superiority of this 
approach. On the other hand, conditional ES models not based on EVT 
that incorporate heavy-tailed distributions also perform well, corrobora-
ting Mabrouk and Saadi (2012). But we will show below that EVT-based 
models not only show an accurate violation ratio, but they also have a 
good performance in ES backtesting. On the other hand, non-EVT based 
models have a violation ratio higher than expected and they show a 
worse ES forecasting performance than EVT-based models.

If we focus on the conditional models not based on EVT, all tests show 
that models with asymmetric distributions for return innovations produ-
ce better ES forecasts. If we take higher p-values as an indication of how 
well the model fulfills the condition established in the null hypothesis, 
then the JSU distribution can be seen as showing the best performance 
in ES forecasting for the set of four stocks. On the other hand, the Z1 
test by Acerbi & Szekely and the tests by Costanzino & Curran and Du & 
Escanciano do not discriminate among asymmetric distributions.

Under the null hypothesis Acerbi & Szekely the number of theoretical 
VaR breaches is 

81 
 

We now examine our forecasts for the complete out-of-sample period (5 years, 1260 data). Since we 
generate time series of VaR and ES forecasts, we present a summary of results over the 5-year period. 
Table 26 presents the average of out-of-sample 1-day ES forecasts (!"), the violations ratio (Viol) of the 
underlying VaR and the backtesting results for the different models for IBM37. Our discussion here is 
focused on the general patterns that appear in these estimation results. The average ES forecasts from 
conditional EVT-based models can be seen to be “more negative” than forecasts from conditional models 
not based on EVT. As shown in Figure 20, differences on ES forecasts at 1% significance level are larger 
than those at 5% significance level. 
 
It seems desirable that a good ES model may have a violation ratio close to the theoretical one. Indeed, as 
we will see below, some backtesting tests for ES are based on this comparison. Conditional EVT-based 
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where !! is the indicator of VaR breaches. The relationship between the two test statistics of Acerbi & 
Szekely is:  !! = (1 +  !!)!!/!! − 1. This shows that while !!, being just an average taken over 
excesses themselves, is insensitive to an excessive number of exceptions,  !!  depends on that number 
through the ratio !!/!!. This is why, when the number of violations exceeds the theoretical level, p-
values for the !!-test are lower than for the !! test. An ES model will pass the !! test when not only the 
magnitude but also the frequency of the excesses is statistically equal to the expected one38. 
 
At the 1% significance level, p-values of Acerbi & Szekely and Graham & Pál tests for the conditional 
models not based on EVT theory are very close to 0. In these cases, we obtain positive realized values for 
!! and !!, instead of them being equal to zero.  In short, we reject H0 because of risk undervaluation. For 
these three tests we observe large differences in p-values between conditional models based on EVT and 
non-EVT based conditional models in favor of the former, which seem to produce better risk forecasts. 
The Graham & Pál test discriminates against the Normal and Student-t distribution for almost all 
significance levels for the four stocks, but only for the non-EVT based ES models. 
 
We indicate in boldface the p-values of the Righi & Ceretta, Acerbi & Szekely and Graham & Pál tests 
when we have obtained statistics with opposite sign to the one embedded in the alternative hypothesis.  
That essentially arises for EVT-based models. In the Righi & Ceretta test we have !!:  !(!"!) = 0, where  
!"! is the statistic of the test which estimate the expected loss and its dispersion through the ES and SD, 
against !!:  ! !"! < 0 but with some models we obtain ! !"! > 0, reflecting that most excesses fall 
between VaR  and ES, not beyond ES, especially under the EVT approach. The first test by Acerbi & 
                                                        
37 Results for the rest of individual stocks assets are available from the author upon request. 
38 Acerbi & Szekely (2014) show that the Z2 test is more powerful than the Z1 test when the null and alternative hypothesis 
differ in volatility, while Z1 is more powerful than Z2 in the case of different tail indexes. 
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p-values for the Z2-test are lower than for the Z1 test. An ES model will 
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the excesses is statistically equal to the expected one38.
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close to 0. In these cases, we obtain positive realized values for Z1 and 
Z2, instead of them being equal to zero. In short, we reject H0 because of 
risk undervaluation. For these three tests we observe large differences in 

38.  Acerbi & Szekely (2014) show that the Z2 test is more powerful than the Z1 test when the null and 
alternative hypothesis differ in volatility, while Z1 is more powerful than Z2 in the case of different tail 
indexes.
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p-values between conditional models based on EVT and non-EVT based 
conditional models in favor of the former, which seem to produce better 
risk forecasts. The Graham & Pál test discriminates against the Normal 
and Student-t distribution for almost all significance levels for the four 
stocks, but only for the non-EVT based ES models.

We indicate in boldface the p-values of the Righi & Ceretta, Acerbi 
& Szekely and Graham & Pál tests when we have obtained statistics 
with opposite sign to the one embedded in the alternative hypothesis. 
That essentially arises for EVT-based models. In the Righi & Ceretta 
test we have 

81 
 

We now examine our forecasts for the complete out-of-sample period (5 years, 1260 data). Since we 
generate time series of VaR and ES forecasts, we present a summary of results over the 5-year period. 
Table 26 presents the average of out-of-sample 1-day ES forecasts (!"), the violations ratio (Viol) of the 
underlying VaR and the backtesting results for the different models for IBM37. Our discussion here is 
focused on the general patterns that appear in these estimation results. The average ES forecasts from 
conditional EVT-based models can be seen to be “more negative” than forecasts from conditional models 
not based on EVT. As shown in Figure 20, differences on ES forecasts at 1% significance level are larger 
than those at 5% significance level. 
 
It seems desirable that a good ES model may have a violation ratio close to the theoretical one. Indeed, as 
we will see below, some backtesting tests for ES are based on this comparison. Conditional EVT-based 
models tend to yield a violation ratio very close to the theoretical one. Departures from the theoretical 
violation ratio are larger for models not using EVT, especially under the Normal and Student-t 
distributions for return innovations. In general, the violations ratio suggests that conditional EVT-based 
models forecast the VaR quantile correctly, corroborating Kuester, Mittnik and Paolella (2006), who 
attest to the superiority of this approach. On the other hand, conditional ES models not based on EVT that 
incorporate heavy-tailed distributions also perform well, corroborating Mabrouk and Saadi (2012). But 
we will show below that EVT-based models not only show an accurate violation ratio, but they also have 
a good performance in ES backtesting. On the other hand, non-EVT based models have a violation ratio 
higher than expected and they show a worse ES forecasting performance than EVT-based models. 
 
If we focus on the conditional models not based on EVT, all tests show that models with asymmetric 
distributions for return innovations produce better ES forecasts. If we take higher p-values as an 
indication of how well the model fulfills the condition established in the null hypothesis, then the JSU 
distribution can be seen as showing the best performance in ES forecasting for the set of four stocks.  On 
the other hand, the !! test by Acerbi & Szekely and the tests by Costanzino & Curran and Du & 
Escanciano do not discriminate among asymmetric distributions. 
 
Under the null hypothesis Acerbi & Szekely the number of theoretical VaR breaches is !!! !! = !", 
where !! is the indicator of VaR breaches. The relationship between the two test statistics of Acerbi & 
Szekely is:  !! = (1 +  !!)!!/!! − 1. This shows that while !!, being just an average taken over 
excesses themselves, is insensitive to an excessive number of exceptions,  !!  depends on that number 
through the ratio !!/!!. This is why, when the number of violations exceeds the theoretical level, p-
values for the !!-test are lower than for the !! test. An ES model will pass the !! test when not only the 
magnitude but also the frequency of the excesses is statistically equal to the expected one38. 
 
At the 1% significance level, p-values of Acerbi & Szekely and Graham & Pál tests for the conditional 
models not based on EVT theory are very close to 0. In these cases, we obtain positive realized values for 
!! and !!, instead of them being equal to zero.  In short, we reject H0 because of risk undervaluation. For 
these three tests we observe large differences in p-values between conditional models based on EVT and 
non-EVT based conditional models in favor of the former, which seem to produce better risk forecasts. 
The Graham & Pál test discriminates against the Normal and Student-t distribution for almost all 
significance levels for the four stocks, but only for the non-EVT based ES models. 
 
We indicate in boldface the p-values of the Righi & Ceretta, Acerbi & Szekely and Graham & Pál tests 
when we have obtained statistics with opposite sign to the one embedded in the alternative hypothesis.  
That essentially arises for EVT-based models. In the Righi & Ceretta test we have !!:  !(!"!) = 0, where  
!"! is the statistic of the test which estimate the expected loss and its dispersion through the ES and SD, 
against !!:  ! !"! < 0 but with some models we obtain ! !"! > 0, reflecting that most excesses fall 
between VaR  and ES, not beyond ES, especially under the EVT approach. The first test by Acerbi & 
                                                        
37 Results for the rest of individual stocks assets are available from the author upon request. 
38 Acerbi & Szekely (2014) show that the Z2 test is more powerful than the Z1 test when the null and alternative hypothesis 
differ in volatility, while Z1 is more powerful than Z2 in the case of different tail indexes. 
 

, where 

81 
 

We now examine our forecasts for the complete out-of-sample period (5 years, 1260 data). Since we 
generate time series of VaR and ES forecasts, we present a summary of results over the 5-year period. 
Table 26 presents the average of out-of-sample 1-day ES forecasts (!"), the violations ratio (Viol) of the 
underlying VaR and the backtesting results for the different models for IBM37. Our discussion here is 
focused on the general patterns that appear in these estimation results. The average ES forecasts from 
conditional EVT-based models can be seen to be “more negative” than forecasts from conditional models 
not based on EVT. As shown in Figure 20, differences on ES forecasts at 1% significance level are larger 
than those at 5% significance level. 
 
It seems desirable that a good ES model may have a violation ratio close to the theoretical one. Indeed, as 
we will see below, some backtesting tests for ES are based on this comparison. Conditional EVT-based 
models tend to yield a violation ratio very close to the theoretical one. Departures from the theoretical 
violation ratio are larger for models not using EVT, especially under the Normal and Student-t 
distributions for return innovations. In general, the violations ratio suggests that conditional EVT-based 
models forecast the VaR quantile correctly, corroborating Kuester, Mittnik and Paolella (2006), who 
attest to the superiority of this approach. On the other hand, conditional ES models not based on EVT that 
incorporate heavy-tailed distributions also perform well, corroborating Mabrouk and Saadi (2012). But 
we will show below that EVT-based models not only show an accurate violation ratio, but they also have 
a good performance in ES backtesting. On the other hand, non-EVT based models have a violation ratio 
higher than expected and they show a worse ES forecasting performance than EVT-based models. 
 
If we focus on the conditional models not based on EVT, all tests show that models with asymmetric 
distributions for return innovations produce better ES forecasts. If we take higher p-values as an 
indication of how well the model fulfills the condition established in the null hypothesis, then the JSU 
distribution can be seen as showing the best performance in ES forecasting for the set of four stocks.  On 
the other hand, the !! test by Acerbi & Szekely and the tests by Costanzino & Curran and Du & 
Escanciano do not discriminate among asymmetric distributions. 
 
Under the null hypothesis Acerbi & Szekely the number of theoretical VaR breaches is !!! !! = !", 
where !! is the indicator of VaR breaches. The relationship between the two test statistics of Acerbi & 
Szekely is:  !! = (1 +  !!)!!/!! − 1. This shows that while !!, being just an average taken over 
excesses themselves, is insensitive to an excessive number of exceptions,  !!  depends on that number 
through the ratio !!/!!. This is why, when the number of violations exceeds the theoretical level, p-
values for the !!-test are lower than for the !! test. An ES model will pass the !! test when not only the 
magnitude but also the frequency of the excesses is statistically equal to the expected one38. 
 
At the 1% significance level, p-values of Acerbi & Szekely and Graham & Pál tests for the conditional 
models not based on EVT theory are very close to 0. In these cases, we obtain positive realized values for 
!! and !!, instead of them being equal to zero.  In short, we reject H0 because of risk undervaluation. For 
these three tests we observe large differences in p-values between conditional models based on EVT and 
non-EVT based conditional models in favor of the former, which seem to produce better risk forecasts. 
The Graham & Pál test discriminates against the Normal and Student-t distribution for almost all 
significance levels for the four stocks, but only for the non-EVT based ES models. 
 
We indicate in boldface the p-values of the Righi & Ceretta, Acerbi & Szekely and Graham & Pál tests 
when we have obtained statistics with opposite sign to the one embedded in the alternative hypothesis.  
That essentially arises for EVT-based models. In the Righi & Ceretta test we have !!:  !(!"!) = 0, where  
!"! is the statistic of the test which estimate the expected loss and its dispersion through the ES and SD, 
against !!:  ! !"! < 0 but with some models we obtain ! !"! > 0, reflecting that most excesses fall 
between VaR  and ES, not beyond ES, especially under the EVT approach. The first test by Acerbi & 
                                                        
37 Results for the rest of individual stocks assets are available from the author upon request. 
38 Acerbi & Szekely (2014) show that the Z2 test is more powerful than the Z1 test when the null and alternative hypothesis 
differ in volatility, while Z1 is more powerful than Z2 in the case of different tail indexes. 
 

 is the statistic of the test which 
estimate the expected loss and its dispersion through the ES and SD, 
against 

81 
 

We now examine our forecasts for the complete out-of-sample period (5 years, 1260 data). Since we 
generate time series of VaR and ES forecasts, we present a summary of results over the 5-year period. 
Table 26 presents the average of out-of-sample 1-day ES forecasts (!"), the violations ratio (Viol) of the 
underlying VaR and the backtesting results for the different models for IBM37. Our discussion here is 
focused on the general patterns that appear in these estimation results. The average ES forecasts from 
conditional EVT-based models can be seen to be “more negative” than forecasts from conditional models 
not based on EVT. As shown in Figure 20, differences on ES forecasts at 1% significance level are larger 
than those at 5% significance level. 
 
It seems desirable that a good ES model may have a violation ratio close to the theoretical one. Indeed, as 
we will see below, some backtesting tests for ES are based on this comparison. Conditional EVT-based 
models tend to yield a violation ratio very close to the theoretical one. Departures from the theoretical 
violation ratio are larger for models not using EVT, especially under the Normal and Student-t 
distributions for return innovations. In general, the violations ratio suggests that conditional EVT-based 
models forecast the VaR quantile correctly, corroborating Kuester, Mittnik and Paolella (2006), who 
attest to the superiority of this approach. On the other hand, conditional ES models not based on EVT that 
incorporate heavy-tailed distributions also perform well, corroborating Mabrouk and Saadi (2012). But 
we will show below that EVT-based models not only show an accurate violation ratio, but they also have 
a good performance in ES backtesting. On the other hand, non-EVT based models have a violation ratio 
higher than expected and they show a worse ES forecasting performance than EVT-based models. 
 
If we focus on the conditional models not based on EVT, all tests show that models with asymmetric 
distributions for return innovations produce better ES forecasts. If we take higher p-values as an 
indication of how well the model fulfills the condition established in the null hypothesis, then the JSU 
distribution can be seen as showing the best performance in ES forecasting for the set of four stocks.  On 
the other hand, the !! test by Acerbi & Szekely and the tests by Costanzino & Curran and Du & 
Escanciano do not discriminate among asymmetric distributions. 
 
Under the null hypothesis Acerbi & Szekely the number of theoretical VaR breaches is !!! !! = !", 
where !! is the indicator of VaR breaches. The relationship between the two test statistics of Acerbi & 
Szekely is:  !! = (1 +  !!)!!/!! − 1. This shows that while !!, being just an average taken over 
excesses themselves, is insensitive to an excessive number of exceptions,  !!  depends on that number 
through the ratio !!/!!. This is why, when the number of violations exceeds the theoretical level, p-
values for the !!-test are lower than for the !! test. An ES model will pass the !! test when not only the 
magnitude but also the frequency of the excesses is statistically equal to the expected one38. 
 
At the 1% significance level, p-values of Acerbi & Szekely and Graham & Pál tests for the conditional 
models not based on EVT theory are very close to 0. In these cases, we obtain positive realized values for 
!! and !!, instead of them being equal to zero.  In short, we reject H0 because of risk undervaluation. For 
these three tests we observe large differences in p-values between conditional models based on EVT and 
non-EVT based conditional models in favor of the former, which seem to produce better risk forecasts. 
The Graham & Pál test discriminates against the Normal and Student-t distribution for almost all 
significance levels for the four stocks, but only for the non-EVT based ES models. 
 
We indicate in boldface the p-values of the Righi & Ceretta, Acerbi & Szekely and Graham & Pál tests 
when we have obtained statistics with opposite sign to the one embedded in the alternative hypothesis.  
That essentially arises for EVT-based models. In the Righi & Ceretta test we have !!:  !(!"!) = 0, where  
!"! is the statistic of the test which estimate the expected loss and its dispersion through the ES and SD, 
against !!:  ! !"! < 0 but with some models we obtain ! !"! > 0, reflecting that most excesses fall 
between VaR  and ES, not beyond ES, especially under the EVT approach. The first test by Acerbi & 
                                                        
37 Results for the rest of individual stocks assets are available from the author upon request. 
38 Acerbi & Szekely (2014) show that the Z2 test is more powerful than the Z1 test when the null and alternative hypothesis 
differ in volatility, while Z1 is more powerful than Z2 in the case of different tail indexes. 
 

 but with some models we obtain 

81 
 

We now examine our forecasts for the complete out-of-sample period (5 years, 1260 data). Since we 
generate time series of VaR and ES forecasts, we present a summary of results over the 5-year period. 
Table 26 presents the average of out-of-sample 1-day ES forecasts (!"), the violations ratio (Viol) of the 
underlying VaR and the backtesting results for the different models for IBM37. Our discussion here is 
focused on the general patterns that appear in these estimation results. The average ES forecasts from 
conditional EVT-based models can be seen to be “more negative” than forecasts from conditional models 
not based on EVT. As shown in Figure 20, differences on ES forecasts at 1% significance level are larger 
than those at 5% significance level. 
 
It seems desirable that a good ES model may have a violation ratio close to the theoretical one. Indeed, as 
we will see below, some backtesting tests for ES are based on this comparison. Conditional EVT-based 
models tend to yield a violation ratio very close to the theoretical one. Departures from the theoretical 
violation ratio are larger for models not using EVT, especially under the Normal and Student-t 
distributions for return innovations. In general, the violations ratio suggests that conditional EVT-based 
models forecast the VaR quantile correctly, corroborating Kuester, Mittnik and Paolella (2006), who 
attest to the superiority of this approach. On the other hand, conditional ES models not based on EVT that 
incorporate heavy-tailed distributions also perform well, corroborating Mabrouk and Saadi (2012). But 
we will show below that EVT-based models not only show an accurate violation ratio, but they also have 
a good performance in ES backtesting. On the other hand, non-EVT based models have a violation ratio 
higher than expected and they show a worse ES forecasting performance than EVT-based models. 
 
If we focus on the conditional models not based on EVT, all tests show that models with asymmetric 
distributions for return innovations produce better ES forecasts. If we take higher p-values as an 
indication of how well the model fulfills the condition established in the null hypothesis, then the JSU 
distribution can be seen as showing the best performance in ES forecasting for the set of four stocks.  On 
the other hand, the !! test by Acerbi & Szekely and the tests by Costanzino & Curran and Du & 
Escanciano do not discriminate among asymmetric distributions. 
 
Under the null hypothesis Acerbi & Szekely the number of theoretical VaR breaches is !!! !! = !", 
where !! is the indicator of VaR breaches. The relationship between the two test statistics of Acerbi & 
Szekely is:  !! = (1 +  !!)!!/!! − 1. This shows that while !!, being just an average taken over 
excesses themselves, is insensitive to an excessive number of exceptions,  !!  depends on that number 
through the ratio !!/!!. This is why, when the number of violations exceeds the theoretical level, p-
values for the !!-test are lower than for the !! test. An ES model will pass the !! test when not only the 
magnitude but also the frequency of the excesses is statistically equal to the expected one38. 
 
At the 1% significance level, p-values of Acerbi & Szekely and Graham & Pál tests for the conditional 
models not based on EVT theory are very close to 0. In these cases, we obtain positive realized values for 
!! and !!, instead of them being equal to zero.  In short, we reject H0 because of risk undervaluation. For 
these three tests we observe large differences in p-values between conditional models based on EVT and 
non-EVT based conditional models in favor of the former, which seem to produce better risk forecasts. 
The Graham & Pál test discriminates against the Normal and Student-t distribution for almost all 
significance levels for the four stocks, but only for the non-EVT based ES models. 
 
We indicate in boldface the p-values of the Righi & Ceretta, Acerbi & Szekely and Graham & Pál tests 
when we have obtained statistics with opposite sign to the one embedded in the alternative hypothesis.  
That essentially arises for EVT-based models. In the Righi & Ceretta test we have !!:  !(!"!) = 0, where  
!"! is the statistic of the test which estimate the expected loss and its dispersion through the ES and SD, 
against !!:  ! !"! < 0 but with some models we obtain ! !"! > 0, reflecting that most excesses fall 
between VaR  and ES, not beyond ES, especially under the EVT approach. The first test by Acerbi & 
                                                        
37 Results for the rest of individual stocks assets are available from the author upon request. 
38 Acerbi & Szekely (2014) show that the Z2 test is more powerful than the Z1 test when the null and alternative hypothesis 
differ in volatility, while Z1 is more powerful than Z2 in the case of different tail indexes. 
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Szekely specifies !!:  !(!!) = 0  against !!:  ! !! > 0 and the second one, !!:  !(!!) = 0  against 
!!:  ! !! > 0. However, with some models, especially models based on EVT, we obtain ! !! < 0 and 
! !! < 0, respectively. In the first test that means that the average of realized excesses is lower in 
absolute value than the predicted ES. In the second test, it means that not only the average excess but also 
the number of excesses is lower than expected.  Finally, in the Graham & Pál test we have  !!:  !"! =
!"!  against !!:  !"! < !"!  where !"!  is equal to  −! under the exponential assumption. The null 
hypothesis is rejected if the realized value of the sample statistic !"! is significantly lower than the 
theoretical level of tail risk !"!. If we obtain !"! = !"!, we will say that the risk model captures tail 
risk sufficiently, or that it provides enough risk coverage, although risk may then be overvalued39. When 
that happens, the logarithmic difference between the probability of an excess and the significance level 
for VaR (α) follows a distribution with thicker tails than the exponential distribution.  When the forecast 
CDF is a correct estimate of the real and unobservable P&L distribution, such probability differences 
follow an exponential distribution40. 
 

IBM 1% significance level 
          

1-day !" Viol !"! !! !! !! !!"  !!"(1) !!"(5)   
N -3.249 0.014 0.00 0.01 0.01 0.00 0.00 0.65 0.97 
ST -4.205 0.010 0.07 0.00 0.00 0.00 0.01 0.72 0.99 
SKST -4.266 0.010 0.07 0.00 0.00 0.00 0.02 0.73 0.99 
SGED -3.921 0.010 0.02 0.00 0.00 0.00 0.01 0.72 0.99 
JSU -4.206 0.010 0.06 0.00 0.00 0.00 0.02 0.73 0.99 
N-EVT -5.931 0.010 0.38 0.96 1.00 0.30 0.26 0.76 0.99 
ST-EVT -6.059 0.010 0.35 0.92 0.99 0.30 0.26 0.77 0.99 
SKST-EVT -6.050 0.010 0.35 0.93 1.00 0.30 0.26 0.77 0.99 
SGED-EVT -5.923 0.010 0.34 0.89 0.98 0.29 0.25 0.77 0.99 
JSU-EVT -6.052 0.010 0.34 0.90 1.00 0.30 0.26 0.76 0.99 

IBM 2.5% significance level 
          

1-day !" Viol !"! !! !! !! !!"  !!"(1) !!"(5)   
N -2.847 0.022 0.01 0.01 0.03 0.00 0.13 0.79 0.84 
ST -3.305 0.024 0.13 0.03 0.05 0.01 0.29 0.86 0.89 
SKST -3.350 0.021 0.12 0.01 0.08 0.03 0.39 1.00 0.91 
SGED -3.255 0.018 0.05 0.01 0.32 0.00 0.48 0.63 0.91 
JSU -3.352 0.019 0.10 0.01 0.32 0.02 0.46 0.81 0.92 
N-EVT -4.042 0.022 0.36 0.79 0.95 0.49 0.35 0.70 0.91 
ST-EVT -4.122 0.022 0.31 0.68 0.94 0.47 0.38 1.00 0.93 
SKST-EVT -4.116 0.024 0.34 0.73 0.96 0.47 0.38 0.99 0.93 
SGED-EVT -4.056 0.022 0.32 0.66 0.92 0.48 0.35 0.69 0.91 
JSU-EVT -4.116 0.023 0.32 0.68 0.99 0.47 0.38 1.00 0.93 

IBM 5% significance level 
          

1-day !" Viol !"! !! !! !! !!"  !!"(1) !!"(5)   
N -2.510 0.037 0.05 0.04 0.49 0.00 0.17 0.37 0.55 
ST -2.699 0.044 0.18 0.13 0.40 0.09 0.33 0.11 0.41 
SKST -2.734 0.044 0.20 0.11 0.39 0.16 0.22 0.11 0.40 
SGED -2.738 0.037 0.15 0.07 0.75 0.02 0.06 0.36 0.58 
JSU -2.752 0.040 0.18 0.11 0.67 0.15 0.14 0.13 0.42 
N-EVT -3.003 0.053 0.48 0.69 0.90 0.52 0.41 0.41 0.67 
ST-EVT -3.055 0.049 0.40 0.70 0.97 0.54 0.37 0.13 0.46 
SKST-EVT -3.050 0.050 0.41 0.76 0.96 0.54 0.37 0.13 0.46 
SGED-EVT -3.015 0.053 0.44 0.69 0.96 0.54 0.36 0.23 0.59 
JSU-EVT -3.050 0.051 0.41 0.63 0.93 0.54 0.37 0.13 0.45 

          

 
 
 

                                                        
39 For more details of this tests, see Graham & Pál (2014). 
40 That amounts to return violations, in probability terms, following a Uniform (0,1) distribution. 
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!"!  against !!:  !"! < !"!  where !"!  is equal to  −! under the exponential assumption. The null 
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39 For more details of this tests, see Graham & Pál (2014). 
40 That amounts to return violations, in probability terms, following a Uniform (0,1) distribution. 
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Szekely specifies !!:  !(!!) = 0  against !!:  ! !! > 0 and the second one, !!:  !(!!) = 0  against 
!!:  ! !! > 0. However, with some models, especially models based on EVT, we obtain ! !! < 0 and 
! !! < 0, respectively. In the first test that means that the average of realized excesses is lower in 
absolute value than the predicted ES. In the second test, it means that not only the average excess but also 
the number of excesses is lower than expected.  Finally, in the Graham & Pál test we have  !!:  !"! =
!"!  against !!:  !"! < !"!  where !"!  is equal to  −! under the exponential assumption. The null 
hypothesis is rejected if the realized value of the sample statistic !"! is significantly lower than the 
theoretical level of tail risk !"!. If we obtain !"! = !"!, we will say that the risk model captures tail 
risk sufficiently, or that it provides enough risk coverage, although risk may then be overvalued39. When 
that happens, the logarithmic difference between the probability of an excess and the significance level 
for VaR (α) follows a distribution with thicker tails than the exponential distribution.  When the forecast 
CDF is a correct estimate of the real and unobservable P&L distribution, such probability differences 
follow an exponential distribution40. 
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39 For more details of this tests, see Graham & Pál (2014). 
40 That amounts to return violations, in probability terms, following a Uniform (0,1) distribution. 
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Szekely specifies !!:  !(!!) = 0  against !!:  ! !! > 0 and the second one, !!:  !(!!) = 0  against 
!!:  ! !! > 0. However, with some models, especially models based on EVT, we obtain ! !! < 0 and 
! !! < 0, respectively. In the first test that means that the average of realized excesses is lower in 
absolute value than the predicted ES. In the second test, it means that not only the average excess but also 
the number of excesses is lower than expected.  Finally, in the Graham & Pál test we have  !!:  !"! =
!"!  against !!:  !"! < !"!  where !"!  is equal to  −! under the exponential assumption. The null 
hypothesis is rejected if the realized value of the sample statistic !"! is significantly lower than the 
theoretical level of tail risk !"!. If we obtain !"! = !"!, we will say that the risk model captures tail 
risk sufficiently, or that it provides enough risk coverage, although risk may then be overvalued39. When 
that happens, the logarithmic difference between the probability of an excess and the significance level 
for VaR (α) follows a distribution with thicker tails than the exponential distribution.  When the forecast 
CDF is a correct estimate of the real and unobservable P&L distribution, such probability differences 
follow an exponential distribution40. 
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39 For more details of this tests, see Graham & Pál (2014). 
40 That amounts to return violations, in probability terms, following a Uniform (0,1) distribution. 
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hypothesis is rejected if the realized value of the sample statistic !"! is significantly lower than the 
theoretical level of tail risk !"!. If we obtain !"! = !"!, we will say that the risk model captures tail 
risk sufficiently, or that it provides enough risk coverage, although risk may then be overvalued39. When 
that happens, the logarithmic difference between the probability of an excess and the significance level 
for VaR (α) follows a distribution with thicker tails than the exponential distribution.  When the forecast 
CDF is a correct estimate of the real and unobservable P&L distribution, such probability differences 
follow an exponential distribution40. 
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Szekely specifies !!:  !(!!) = 0  against !!:  ! !! > 0 and the second one, !!:  !(!!) = 0  against 
!!:  ! !! > 0. However, with some models, especially models based on EVT, we obtain ! !! < 0 and 
! !! < 0, respectively. In the first test that means that the average of realized excesses is lower in 
absolute value than the predicted ES. In the second test, it means that not only the average excess but also 
the number of excesses is lower than expected.  Finally, in the Graham & Pál test we have  !!:  !"! =
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that happens, the logarithmic difference between the probability of an excess and the significance level 
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SKST -4.266 0.010 0.07 0.00 0.00 0.00 0.02 0.73 0.99 
SGED -3.921 0.010 0.02 0.00 0.00 0.00 0.01 0.72 0.99 
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N-EVT -5.931 0.010 0.38 0.96 1.00 0.30 0.26 0.76 0.99 
ST-EVT -6.059 0.010 0.35 0.92 0.99 0.30 0.26 0.77 0.99 
SKST-EVT -6.050 0.010 0.35 0.93 1.00 0.30 0.26 0.77 0.99 
SGED-EVT -5.923 0.010 0.34 0.89 0.98 0.29 0.25 0.77 0.99 
JSU-EVT -6.052 0.010 0.34 0.90 1.00 0.30 0.26 0.76 0.99 

IBM 2.5% significance level 
          

1-day !" Viol !"! !! !! !! !!"  !!"(1) !!"(5)   
N -2.847 0.022 0.01 0.01 0.03 0.00 0.13 0.79 0.84 
ST -3.305 0.024 0.13 0.03 0.05 0.01 0.29 0.86 0.89 
SKST -3.350 0.021 0.12 0.01 0.08 0.03 0.39 1.00 0.91 
SGED -3.255 0.018 0.05 0.01 0.32 0.00 0.48 0.63 0.91 
JSU -3.352 0.019 0.10 0.01 0.32 0.02 0.46 0.81 0.92 
N-EVT -4.042 0.022 0.36 0.79 0.95 0.49 0.35 0.70 0.91 
ST-EVT -4.122 0.022 0.31 0.68 0.94 0.47 0.38 1.00 0.93 
SKST-EVT -4.116 0.024 0.34 0.73 0.96 0.47 0.38 0.99 0.93 
SGED-EVT -4.056 0.022 0.32 0.66 0.92 0.48 0.35 0.69 0.91 
JSU-EVT -4.116 0.023 0.32 0.68 0.99 0.47 0.38 1.00 0.93 

IBM 5% significance level 
          

1-day !" Viol !"! !! !! !! !!"  !!"(1) !!"(5)   
N -2.510 0.037 0.05 0.04 0.49 0.00 0.17 0.37 0.55 
ST -2.699 0.044 0.18 0.13 0.40 0.09 0.33 0.11 0.41 
SKST -2.734 0.044 0.20 0.11 0.39 0.16 0.22 0.11 0.40 
SGED -2.738 0.037 0.15 0.07 0.75 0.02 0.06 0.36 0.58 
JSU -2.752 0.040 0.18 0.11 0.67 0.15 0.14 0.13 0.42 
N-EVT -3.003 0.053 0.48 0.69 0.90 0.52 0.41 0.41 0.67 
ST-EVT -3.055 0.049 0.40 0.70 0.97 0.54 0.37 0.13 0.46 
SKST-EVT -3.050 0.050 0.41 0.76 0.96 0.54 0.37 0.13 0.46 
SGED-EVT -3.015 0.053 0.44 0.69 0.96 0.54 0.36 0.23 0.59 
JSU-EVT -3.050 0.051 0.41 0.63 0.93 0.54 0.37 0.13 0.45 

          

 
 
 

                                                        
39 For more details of this tests, see Graham & Pál (2014). 
40 That amounts to return violations, in probability terms, following a Uniform (0,1) distribution. 
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 , we will 
say that the risk model captures tail risk sufficiently, or that it provides 
enough risk coverage, although risk may then be overvalued39. When 
that happens, the logarithmic difference between the probability of an 
excess and the significance level for VaR (α) follows a distribution with 
thicker tails than the exponential distribution. When the forecast CDF is 
a correct estimate of the real and unobservable P&L distribution, such 
probability differences follow an exponential distribution40.

39.  For more details of this tests, see Graham & Pál (2014).
40.  That amounts to return violations, in probability terms, following a Uniform (0,1) distribution.
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Table 26: Mean ES forecasts (E͞S), violation ratio (Viol) and backtesting 
results (p-values) for ES forecasts for IBM

BTT is the test of Righi & Ceretta (2015), Z1 and Z2 are the tests of Acerbi & 
Szekely (2014), TR is the test of Graham & Pál (2014), and UES, CES (1) and 
CES (5) are the unconditional and the conditional (lags = 1 and lags = 5) 
tests of Costanzino & Curran (2015) and Du & Escanciano (2016). p-values 
in bold indicate that the statistics obtained in these tests have an opposite 
sign to that specified under the alternative hypothesis.

IBM	 1% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES (1) CES (5) 

N -3.249 0.014 0.00 0.01 0.01 0.00 0.00 0.65 0.97

ST -4.205 0.010 0.07 0.00 0.00 0.00 0.01 0.72 0.99

SKST -4.266 0.010 0.07 0.00 0.00 0.00 0.02 0.73 0.99

SGED -3.921 0.010 0.02 0.00 0.00 0.00 0.01 0.72 0.99

JSU -4.206 0.010 0.06 0.00 0.00 0.00 0.02 0.73 0.99

N-EVT -5.931 0.010 0.38 0.96 1.00 0.30 0.26 0.76 0.99

ST-EVT -6.059 0.010 0.35 0.92 0.99 0.30 0.26 0.77 0.99

SKST-EVT -6.050 0.010 0.35 0.93 1.00 0.30 0.26 0.77 0.99

SGED-EVT -5.923 0.010 0.34 0.89 0.98 0.29 0.25 0.77 0.99

JSU-EVT -6.052 0.010 0.34 0.90 1.00 0.30 0.26 0.76 0.99

IBM	 2.5% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES (1) CES (5) 

N -2.847 0.022 0.01 0.01 0.03 0.00 0.13 0.79 0.84

ST -3.305 0.024 0.13 0.03 0.05 0.01 0.29 0.86 0.89

SKST -3.350 0.021 0.12 0.01 0.08 0.03 0.39 1.00 0.91

SGED -3.255 0.018 0.05 0.01 0.32 0.00 0.48 0.63 0.91

JSU -3.352 0.019 0.10 0.01 0.32 0.02 0.46 0.81 0.92

N-EVT -4.042 0.022 0.36 0.79 0.95 0.49 0.35 0.70 0.91

ST-EVT -4.122 0.022 0.31 0.68 0.94 0.47 0.38 1.00 0.93

SKST-EVT -4.116 0.024 0.34 0.73 0.96 0.47 0.38 0.99 0.93

SGED-EVT -4.056 0.022 0.32 0.66 0.92 0.48 0.35 0.69 0.91

JSU-EVT -4.116 0.023 0.32 0.68 0.99 0.47 0.38 1.00 0.93
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IBM	 5% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES (1) CES (5) 

N -2.510 0.037 0.05 0.04 0.49 0.00 0.17 0.37 0.55

ST -2.699 0.044 0.18 0.13 0.40 0.09 0.33 0.11 0.41

SKST -2.734 0.044 0.20 0.11 0.39 0.16 0.22 0.11 0.40

SGED -2.738 0.037 0.15 0.07 0.75 0.02 0.06 0.36 0.58

JSU -2.752 0.040 0.18 0.11 0.67 0.15 0.14 0.13 0.42

N-EVT -3.003 0.053 0.48 0.69 0.90 0.52 0.41 0.41 0.67

ST-EVT -3.055 0.049 0.40 0.70 0.97 0.54 0.37 0.13 0.46

SKST-EVT -3.050 0.050 0.41 0.76 0.96 0.54 0.37 0.13 0.46

SGED-EVT -3.015 0.053 0.44 0.69 0.96 0.54 0.36 0.23 0.59

JSU-EVT -3.050 0.051 0.41 0.63 0.93 0.54 0.37 0.13 0.45

Bold figures in the tables signal a frequent overvaluation of risk for 
EVT-based ES models. In them, the number of violations does not de-
part much from the theoretical value, reflecting good VaR forecasts. 
But the sign of the test statistic is contrary to that in the null hypothe-
sis, showing an overvaluation of ES that would imply too high a level 
of required capital. Such overvaluation will not be detected by one-
sided tests. However, the absolute value of the statistic is generally 
very small, suggesting that the estimation error may be statistically 
acceptable. The possible overvaluation of risk can be seen in Figure 21 
as it shows the tail probability distributions estimated for IBM. Other 
assets show a similar picture. Curve lines show the estimated tail pro-
babilities, while the rectangles display observed relative frequencies. 
Estimated parameters for each distribution are shown in parenthesis. 
We observe that most probability distributions other than GPD tend 
to undervalue the weight of extreme returns. Such undervaluation is 
especially obvious for the Normal distribution. On the contrary, the 
GPD is suitable to appropriately capture tail risk, and it avoids under-
estimating extreme risks, although at the price of slight overvaluation 
of the risk of medium range losses.
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Figure 21: Estimated tail-distributions for IBM. N is the Normal distribution

ST is the Student-t (4.67), SKST is the Skewed Student-t (0.97, 4.69), SGED is 
the Skewed Generalized Error (0.99, 1.15) and JSU is the Johnson SU (-0.092, 
1.53) distribution. Numerical estimates for parameters in brackets.

By and large, we have obtained that for our sample of stocks, condi-
tional EVT-based models not only produce better VaR forecasts, but 
also, they yield the best results in ES forecasts according to different ES 
backtests. In many cases, we obtain p-values close to 1 with EVT-based 
models. The success of EVT models for ES forecasting corroborates Ma-
rinelli et al. (2007), Jalal and Rockinger (2008) and Wong et al. (2012). 
However, we must bear in mind that the Righi & Ceretta, Acerbi & Sze-
kely and Graham & Pal tests are one-sided by nature and they focus on 
risk undervaluation. Therefore, in those tests risk overvaluation does not 
lead to a rejection of the null hypothesis, and that seems to be often the 
case in ES forecasting with EVT-based models.

3.5.2.	  ES forecasts under Filtered Historical Simulation

We evaluate the performance results of 1-day ahead out-of-sample ES 
forecasts from FHS using the test of Righi & Ceretta and the two tests of 
Acerbi & Szekely because they are suitable for non-parametric VaR and 
ES forecasts. Table 27 shows average ES forecasts (E͞S), the violations 
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Table 27: Mean ES forecasts (E͞S), violation ratio (Viol) and backtesting 
results (p- values) for ES forecasts for IBM and for 1-day returns calculated 
by Filtered Historical Simulations (FHS)
BTT is the test of Righi & Ceretta (2015) and Z1 and Z2 are the tests of Acerbi 
& Szekely (2014). p-values in bold indicate that the statistics obtained in these 
tests have an opposite sign to that specified under the alternative hypothesis.

IBM 	 1% significance level
FHS ES Viol BTT Z1 Z2

N -4.553 0.011 0.15 0.02 0.02
ST -4.629 0.011 0.11 0.00 0.00
SKST -4.627 0.010 0.10 0.02 0.02
SGED -4.577 0.010 0.13 0.02 0.02
JSU -4.619 0.011 0.15 0.00 0.12
N-EVT -4.490 0.010 1.00 0.90 0.97
ST-EVT -4.592 0.011 0.12 0.14 0.97
SKST-EVT -4.575 0.011 0.12 0.10 0.97
SGED-EVT -4.519 0.011 0.09 0.08 1.00
JSU-EVT -4.573 0.011 0.12 0.00 0.97
IBM	 2.5% significance level
FHS ES Viol BTT Z1 Z2

N -3.474 0.021 0.19 0.02 0.29
ST -3.486 0.021 0.14 0.03 0.26
SKST -3.485 0.022 0.16 0.01 0.13
SGED -3.471 0.021 0.19 0.03 0.30
JSU -3.481 0.022 0.18 0.03 0.45
N-EVT -3.471 0.021 1.00 0.80 0.87
ST-EVT -3.492 0.021 0.14 0.37 0.94
SKST-EVT -3.481 0.022 0.17 0.42 0.88
SGED-EVT -3.466 0.021 0.14 0.31 0.93
JSU-EVT -3.482 0.022 0.17 0.16 0.88
IBM	 5% significance level
FHS ES Viol BTT Z1 Z2

N -2.791 0.042 0.27 0.14 0.68
ST -2.784 0.044 0.21 0.13 0.50
SKST -2.782 0.043 0.22 0.05 0.43
SGED -2.780 0.043 0.26 0.10 0.51
JSU -2.781 0.044 0.24 0.12 0.45
N-EVT -2.792 0.042 1.00 0.75 0.75
ST-EVT -2.792 0.044 0.25 0.44 0.74
SKST-EVT -2.784 0.045 0.26 0.42 0.80
SGED-EVT -2.784 0.044 0.25 0.39 0.82
JSU-EVT -2.786 0.044 0.25 0.52 0.79
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ratio of the underlying VaR and backtesting results41. A comparison with 
Table 26 shows that (i) conditional EVT-based models do not always 
present “more negative” average ES values than conditional models not 
based on EVT. Besides, average ES values over the out-of-sample period 
(5 years, 1260 data) are now more similar among models than under the 
parametric approach. This observation is important because it amounts 
to a reduction in Model Risk, i.e., in the uncertainty that arises on the 
true value of VaR and ES due to the availability of forecasts coming 
from a variety of alternative models, (ii) average ES forecasts under FHS 
are closer to those obtained under the parametric approach for non EVT-
based models than for EVT-based models, (iii) regarding VaR violation 
rates, there is some tendency to undervalue risk at the 1% significance 
level (more violations than expected) and overvalue risk at the 5% sig-
nificance level (less violations than expected), (iv) unlike Table 26, EVT-
based models do not yield a lower violation rate than non-EVT based 
models, (v) models not based on EVT seem again unsuitable in terms of 
ES forecasts, being rejected by Acerbi & Szekely Z1 and Z2 tests for ES1% 
and ES2.5%.

Less discrimination is obtained at 5% significance level. For instance, at 
that level, all models display a good ES performance for BP at 10% sig-
nificance, although the Z2 test suggests that ES is possibly overvalued, 
and (vi) overvaluation of risk as signaled by a sign of the test statistic 
contrary to H1 in the one-tail tests is much less frequent than under the 
parametric approach.

The conclusions obtained when applying ES backtests under the para-
metric and FHS approaches are similar, which is reassuring. Differen-
ces between conditional models based on EVT and not based on EVT 
are more evident under the parametric approach, because the power 
and flexibility of conditional volatility models is diluted by histori-
cal simulation. The dilution depends on the number of realizations 
or paths generated from the standardized residuals from the first step 
estimation.

41.  Results for the rest of individual stocks assets are available from the author upon request.
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3.6.	 Conclusions

In spite of the substantial theoretical evidence documenting the supe-
riority of Expected Shortfall (ES) over VaR as a measure of risk, fi-
nancial institutions and regulators have only recently embraced ES as 
an alternative to VaR for financial risk management. One of the major 
obstacles in this transition has been the unavailability of simple tools 
for the evaluation of ES forecasts. While the Basel rules for VaR tests 
are based on counting the number of exceptions, assessing the adequa-
cy of an ES model requires the consideration of the size of tail losses 
beyond the VaR boundary. Different approaches have been proposed in 
the literature for ES backtesting in the last few years but, to the best of 
our knowledge, this paper provides the first extensive comparison of a 
variety of alternative ES backtesting procedures.

We use daily market closing prices for 10/2/2000 to 9/30/2016 on IBM, 
Santander, AXA and BP, and we consider some flexible families of as-
ymmetric distributions for as- set returns that include more standard 
probability distributions as special cases. Normal and Student-t distri-
butions are considered as a benchmark for comparison. Given the evi-
dence put forward in Garcia-Jorcano and Novales (2017) we use an 
APARCH volatility specification for all assets. We are initially interested 
in exploring which probability distribution seems more appropriate to 
model asset returns in order to get good ES forecasts. Following the 
standard risk management methodology, once we estimate the dynamics 
of returns and the parameters of the probability distribution for return 
innovations, we forecast returns and volatility and apply a parametric 
approach to forecast VaR and ES. After that, we use a variety of tests 
recently proposed for ES model validation.

As the true temporal dependency of financial returns is a complex is-
sue, the standard approach to risk management can be improved by 
considering a two-step procedure that applies Extreme Value Theory 
(EVT): First, filtering the returns through a more or less complex GARCH 
model and second, estimating an extreme value theory type of density 
for the tail of the distribution of return innovations, using their assu-
med iid structure. This two-step procedure was proposed by McNeil & 
Frey (2000) and it leads to a significant improvement, since VaR and ES 
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forecasts then incorporate changes in expected returns and volatility 
over time. So, in the application of EVT we first estimate a dynamic 
model for returns and their volatility under a given probability distri-
bution. After that, we fit a Generalized Pareto Distribution for return 
innovations once we have filtered autocorrelations and GARCH effects. 
As in the standard approach, we then forecast VaR and ES at different 
significance levels at 1- and 10-day horizons and compare the results 
with those obtained under the standard parametric approach.

In standard conditional models fitted to the full distribution of return 
innovations we observe that asymmetric distributions play an important 
role in capturing tail risk. This is because some stylized facts of financial 
returns such as volatility clusters, heavy tails and asymmetry are co-
llected suitably by these asymmetric distributions. When we apply EVT 
to return innovations by modeling the tail with a GPD we obtain good 
ES forecasts regardless of the probability distribution used for returns. 
So, it looks as if considering just the return innovations in the tail of 
the distribution is more important than discriminating among proba-
bility distributions when forecasting ES. Besides, each combination of 
APARCH volatility and probability distribution under the EVT approach 
dominates the similar specification under the standard approach fitted 
to the full distribution. Conditional EVT models turn out to be more ac-
curate and reliable than standard conditional models not based on EVT 
both, for forecasting VaR and for predicting losses beyond VaR.

We have also shown that using Filtered Historical Simulation can be 
very useful. First, qualitative results under FHS are very similar to those 
obtained under the parametric approach, which is reassuring. EVT-
based models dominate non-EVT based models for forecasting both VaR 
and ES, and asymmetric probability distributions yield more accurate 
ES forecasts. Second, ES forecasts are much more similar for different 
probability distributions, and also between forecasts from EVT-based 
models and non-EVT based models. That implies a considerable reduction 
in model risk, i.e., the uncertainty in ES forecasting because of having 
alternative model specifications. Given the extreme importance of these 
forecasts for capital requirements at financial institutions, reducing 
model risk is a central issue in tail risk estimation.
The ES tests we consider focus on a possible undervaluation of risk, 
except for Costanzino & Curran and Du & Escanciano tests which are 
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two-tailed tests. We have pointed out that in some cases backtesting 
does not reject the model specification because the sample evidence is 
against both the null and the alternative hypothesis. In other words, 
some ES models are not rejected in spite of the fact that they overvalue 
risk, albeit by a small amount in most cases. When using ES to build 
the institution’s reserves to cover potential losses in times of crisis, the 
undervaluation may be fatal, but overvaluation will lead to inefficient 
use of capital. This is a relevant consideration that should be taken into 
account for ES model validation.

A final remark from this research relates to the possible weak power of 
currently available tests for ES forecasting. Other than showing a clear 
preference for an EVT approach as well as a rejection of symmetric pro-
bability distributions for return innovations, none of the tests we have 
considered are able to discriminate much among alternative probability 
distributions. However, the recommendation to use FHS under an EVT 
specification for ES forecasting is a clear conclusion of this research.
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The thesis analyzes the effect that the sample size, the 
asymmetry in the distribution of returns and the leverage 
in their volatility have on the estimation and forecasting 
of market risk in financial assets. The goal is to compa-
re the performance of a variety of models for the es-
timation and forecasting of Value at Risk (VaR) and 
Expected Shortfall (ES) for a set of assets of different 
nature: market indexes, individual stocks, bonds, exchange rates, and commodities.

The three chapters of the thesis address issues of greatest interest for the measu-
rement of risk in financial institutions and, therefore, for the supervision of risks 
in the financial system. They deal with technical issues related to the implemen-
tation of the Basel Committee’s guidelines on some aspects of which very little is 
known in the academic world and in the specialized financial sector.

In the first chapter, a numerical correction is proposed on the values usually es-
timated when there is little statistical information, either because it is a financial 
asset (bond, investment fund...) recently created or issued, or because the nature 
or the structure of the asset or portfolio have recently changed. The second chap-
ter analyzes the relevance of different aspects of risk modeling. The third and last 
chapter provides a characterization of the preferable methodology to comply with 
Basel requirements related to the backtesting of the Expected Shortfall. 




